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FINAL REPORT

EXECUTIVE SUMMARY

Focus of the Present Investigation

The focus of this research has been on the assessment of the effects of internal
friction on the response of aeroelastic systems exhibiting either explosive flutter or limit
cycle oscillations to provide a confirmation of the potential of friction as a significant
stabilizing factor in the limit cycle oscillations observed on several aircraft, e.g. F-16.
The work performed in this regard can broadly be divided into three major efforts, two

computational/theoretical and one experimental:

(1) the analysis of the effects of friction on a structural dynamic systems in which

~ the effects of the aerodynamic forces have been modeled. Specifically, a dashpot of

negative constant was introduced to model the unstable linear aerodynamic effects, while
an additional van der Pol restoring force was included to characterize possible stable
nonlinear aerodyhamic effects. Although approximate (because of the modeling of the
aeroelastic forces), this system was shown to behave almost exactly as the aeroelastic
systems of task (2). The computational expediency of this simple model allowed to
analyze and study a vast array of cases from which broad conclusions were derived the
validity of which was later ¢xtended to the complex models of task (2).

(2) the analysis of the effects of friction on actual aeroelastic systems, i.e. airfoil
and flat plate in a uniform flow, in which the aerodynamic forces are computed in time in
parallel to the structural dynamic analysis. A tight coupling between structural motions
and flow field was achieved by proceeding iteratively at eé.ch time step until both sets of

field equations (structural and aerodynamic) were satisfied.
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(3) the experimental testing in the DLR- Géttingen (Gerrﬁany) Transonic wind
tunnel of a NLR7301 airfoil equipped with a friction device similar to the ones studied in
tasks (1) and (2). This effort was followed by a data analysis that revealed mostly - |
_ similarities, albeit a few differences, with the theoretical results of tasks (1) and (2)
above.

The overall. results of this study demonstrate that frictibn can indeed provide a
stabilization of an impending flutter and can significantly decrease the amplitude of
existing limit cycle oscillations of aeroelastic systems with an appropriafe selection of the

friction device parameters most notably natural frequency and coefficient of friction.

Participants and Publications

These efforts were carried out by the principal investigators, Prof. Danny D. Liu
and Marc P. Mignolet from Arizona State University and the former graduate students
Anthony M. Agelastos and Goang Gae Choi both of whom have successfully defended
their M.S. thesis on this topic. The executive summary of results presented below
highlights the findings discussed in details in their theses:

1. Agelastos, A.M., Effects of Coulomb Friction on Flutter and Limft Cycle Oscillations
According to a Structural Dynamic Model, M..S., Arizbna State University, May 2005.

2. Choi, G.G., Effects of Coulomb Friction on Aeroelastic Systems, M.S., Arizona State
University, August 2005.

and which are included to this final report as Attachments. Several additional persons
contributed very significantly to the experimental component of this project, most

specifically Dr. Dallas Kingsbury from Arizona State University and the staff of the




DLR-Géttingen Institute for Aeroelasticity, in particular Dr. Guido Dietz and Dr. Giinter
Schewe.

In addition to the above theses, several conference papers have been published - |
. that describe the ﬁndings of this project:
1. Choi, G.G.‘, Agelastqs, AM, Mignolet, M.P., and Liu, D.D‘., “Qn the Impact of
Internal Frictiqn on Flutter Onset and Limit Cycle Oscillations Amplitude,” International
Forum on Aeroelasticity and Structural Dynamics 2005, Munich, Germany, Jun. 28-Jul.
1, 2005. Papef IF-022.
2. Kingsbury, D.W., Agelastos, A.M., Dietz, G., Mignolet, M.P., Liu, D.D., and Schewe, |
G., “Limit Cycle Oscillations of Aeroelastic Systems with Internal Friction in the
Transonié Domain - Experimental Results,” Proceedings of the 46th Structures,
~ Structural ‘Dynamics, 'and Materials Conference, Austin, Texas, Apf. 18-21, 2005.
AJAA Paper AIAA-2005-1914.
3. Choi, G.G,, Agelastbos,_ AM., Mignolet, M.P., and Liu, D.D., “Effects of Internal
| Friction on the Dynamic Behavior of Aeroelastic Systems,” Proceedings of the 45th
Structures, Structural Dynamics, dnd Materials Conference, Palm Springs, California,
Apr. 19-22,2004. Paper ATAA-2004-1591.
4. Mignolet, M.P., Agelastos, AM., and Liu, D.D,, “impact of Frictional Structﬁral
Nonlinearity in the f’resence of Negative Aerodynamic Damping,” Proceedings of the
44th Structures, Structural Dynamics, and Materials Conference, Norfolk, Virginia, Apr.
7-10, 2003. Paper ATAA-2003-1428.

Finally, the following three journal papers are in preparation:




1. Kingsbury, D.W.; Agelastos, A.M., Dietz, G., Mignolet, M.P., Liu, D.D., and Schewe,
G., “Measurements of Limit Cycle Oscillations of Aeroelastic Systems Induced by
Internal Friction in the Transonic Domain - Experimental Results”.

- 2. Agelastos, A.M., Choi, G.G., Mignolet, MP, Liu, D.D,, and Liao, Y., “Effects of
Internal Friction on the Behavior of Aeroelastic Systems. Part I: Increased Stability and

Limit Cycle Oscillations due to Friction only”.

3. Choi, G.G., Agelastos, A.M., Mignolet, M.P., and Liu, D.D., “Effects of Internal -

Friction on the Behavior of Aeroelastic Systems. Part II: Reduction of Existing Limit
Cycle Oscillations”.

Summary of Findings

The findings of the three separate tasks (1)-(3) will be summarized in order. The
structural dynamic model! of task (1) was a two degrée of freedpm system in which the
largest mass represented the wing while the sma_llest one would model the sliding
component, e.g. a missile or store. The negative dashpot and the van der Pol force were
assumed to act only on the largest mass (wing). Further, the sliding mass was assumed to
be connected to the wing through a friction slider,-_a spring (k; =20), and possibly a
dashpot (positive viscous damping, ¢; 2 0).

The system was analyzed first without a van der Pol term. Further, in the absence
of elastic deformation during sliding, i.e., for k =0, it §vas shown that an exact
procedure can be followed to transform the nonlinear equations of motion into a set of
nonlinear algebraic equations and that a stabilization of the unstable aerodynamic forces

was possible. The most negative damping that could be stabilized in this configuration

was in fact shown to be 27/ 7’ (for r <<1) where r denotes the ratio of the two masses




of the system. The system was found to exhibit periodic motions with possible stick
phases. The introduction of a nonzero spring constant was shown to lead to an increased

stabilization potential that is maximum in a “tuned damper” configuration, i.e. when the "

~ natural frequency of the primary component (the wing alone) closely matches the natural

frequency of the secondary alone (sliding mass on spring k). In addition to this benefit,

- a broader set of motions was also observed. Besides periodic (referred to as single

frequency here) solutions, multiple frequency motions were also found to exist,
especially near the tuned damper configuration while the single frequency solutions were
typically obtained near the stability border. Both continuous slip and stick slip multiple

frequency motions were noted which were shown to be either aperiodic or chaotic.

Further, the transition from single to multiple frequency was shown to be a Hopf

bifurcation. It was finally observed that the maximum steady state response of the wing is

typically minimum for the single frequency motions occurring - just next to the

bifurcation. A sharp increase in response level is obtained after bifurcation that results

from the beating induced by the presence of multiple frequencies.

The inclusion of a van der Pol term did not significantly change the above
findings with the noted exception that the system is always stable even in the absence of
friction in which case it experiences a continuous slip single frequency motion. In fact, it
was observed that the van der Pol term leads to a significant reduction of the large
amplitude beating excursions obtained otherwise in connection with multiple frequency
solutions and appears to postpone the Hopf bifurcation. In regards to stick slip vs.
continuous slip, the decrease in response implied by the presence of the van der Pol term

was found to increase the likelihood of stick slip motions which typically occur at lower




response levels than continuous slip solutions do. The effects of the coefficients of

friction (the static and dynamic coefficients were assumed equal here) was studied next.

It was first noted that the amplitude of continuous slip motions (single or multiple |

~frequency) is linearly scaled by the coefficient of friction and this parameter plays no

further role in these cases. When stick phases occur, a more complex dependency on the

~coefficient of friction is obtained. Next, it was found that 2 stable solutions can be

obtained for low coefficients of friction. One such solution has a low amplitude and is

dominated by friction effects alone with little influence of the van der Pol term. The

Teverse statement holds for the other solution, the amplitude is large with the stabilization

dictated by the van der Pol force with little effect of friction. As the coefficient of friction
increases, thesé two solutions become closer together and eventually merge. The
amplitude of response then appears to increase monotonically with further incrgases of
the coefficient of ﬁiction._ The effects of a second, viscous damper in parallel to the
friction elemenf was finally considered. It was found that the two damping mechanisms
do not necessarily reinforce each other and that the friction hinders the viscous
dissipation when stick occurs. In fact, nonzero amplitude limit cycle oscillations were
noted with friction in situations where the equilibrium (zero response) would in fact be
stable without friction.

Two tightly coupled aeroelastic systems were considered in task (2):

(A) a flat-plate airfoil model supporting a torsional friction device composed of a
disk flexibly connected to the plate by a torsional spring and squeezed between two rough
surfaces, The behavior of this system is studied when placed in a uniform, inviscid and

incompressible flow.



(B) a NACAQ012 airfoil placed in a uniform inviscid and incompressible air flow
and supporting either the same frictional device as the flat plate or a block sliding in a
rough internal tfack.

. The systerh A .does not exhibit limit cycle‘ oscillations in the absence of friction, it -
is either stable or displéys an explosive flutter. The system B has been shown in some
earlier studies to exhibit, in the absence of friction, aerodynamic-driven limit cycle
oscillations ‘near the flutter speed. The analysis of these two systems thus provide distinct
perspéctives on the role of friction, on systems exhibiting explosive flutter (system A)
and those in which an aero-driven limit cycle oscillation occurs (system B).

The system A was analyzed first and a stability analysis of it was initially
conducted with the disk in either coﬁtinuoﬁs sticking or frictionless slipping modes to
assess the expected stability domains. It was shown and justified that the system in slip
mode exhibits instabilitiéé at éarlier flow velocities than its stuck counterpart. This
~ property allows for the existence of both} super- and subcﬁtical limit cycle oscillations.
While the sﬁbcritical limit cycles were observed to be unstable, a zone of stable
supercritical limit cycle oscillations was found that extends about 3% past the flutter
spéed of the system \;vithout the friction device. This gain shows a good stabilization
property since the moment of inertia of the selected friction device system is only 5% of
the moment of inertia of the plate. The observed limit cycles exhibit either continuous
slip or stick slip behaviors and are either single frequency (periodic) or multiple
frequency (aperiodic or chaotic) with the latter ones appearing primarily at the highest
flow speeds and for the highest frequencies of the torsional friction device. The above

results were obtained by time marching the plate equations of motions with a rational




approximation of the Theodorsen function-but. a harmonic balan'ce. approach was also
developed that led to very good approximafions of the single frequency continuous slip
limit cycle oscillations.
The system B was considered next with a friction coinponent modeled by a block
moving in an intérnal track. While limit cycle oscillations were observed, if was also
" shown that the block could bécome stuck at a position far from its original one and thus
would create a change of inertia sufficiently large to s.tabilize the airfoil. This effect does
not involve any dissipation due to friction and is thus not relevant to the present effort.
Accordingly, this frictional model was not considered further and was replaced by its
torsional counterpart (as in the flat plate analysis) which does not suffer from the same
~defect. The resﬁlts of tiﬁle marching computations demonstrate that friction can
éubstantially decrease the level of the limit .cycle oscillations, especially with a low |
coefficient of friction, but that increases in the response are also possible, depending on
the selectibn of the natural frequency of the torsional friction device. As in the flat plate,
continuous siip and stick slip solutions wefe observed most of which‘ were single
frequency (periodic).
The last task, i.e. (3), of this project focused on the design, fabrication, and testing

of an actual friction device on an airfoil. The b.asic design of the system is a rotating disk
_connected to the airfoil by a torsional spring of natural frequency closely matching that of
the airfoil to achieve the tuned damper arrangement discussed above. The spring was
instrumented with strain gauges to measure the angle of torsion of the system. Finally, a
complex system was designed to produce the required normal force to induce friction on

the moving airfoil without transmitting any shear or moment. Preliminary shaker testing



in the ASU vibrations laboratory successfully validated the design: stuck, stick—slip, and
continuous slip. motions could be observed by varying the preload on the disk. Full blown
testing in the DNW-TWG transonic wind tunnel at DLR led to the observation of the first - |
. recordedvlimilt cycle oscillations with friction effects and relative motions of the diskkand
~airfoil. Only single frequency motions were observed but both continuous slip and stick
slip behaviors Were found. The measurements demonstrate a slight effect of friction and
the subcritical nature of the limit cycle oscillations. This behavior was eXplained by
analyzing the natural frequencies of the stuck and slipping configurations as in task (2).
‘Several findings are however still unexplained, e.g. the asymmetry of the sticking phase,
the continuous slip to stick slip transition associated with an increase in response, and the
near Mach independent amplitude of torsional response.

The overall bresults of this study demonstrate that friction can indeed provide a
stabilization of an impending flutter and can significantly decrease the amplitude of
_existing limit cyclc bscillations of aeroelastic systems with an appropriate selection }of the

friction device parameters most notably natural frequency and coefficient of friction.
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ABSTRACT
The appearance of limit cycle oscillations in aeroelastic systems has usually been
“associated with nonlinearity in the aerodynamics and/or in the structural restoring forces.
It has howevér been recently suggested that nonlinearity in the damping mecﬁanism;
" more notably friction between a small moving part (or many such parts) aﬁd the wing,
o : rﬁay indeed be a source of post-flutter limit cycle oscillations. The present work provides
a first validation of this expectation.

In the first part of this thesis, a two-degree-of-freedom structural dynamic model
is considered in which the biggest rhass, representing the wing, and the smaller one,
: modeling the sliding componeht, are connected by at least a friction element. The
: unstable aerodynarnic effects are approximated by a dashpot of negative value acting on

the wing alone. The response of this system is analjrzed in a variety of situations, i.e. with

~an additional spring between masses, an additional positive damper between them, and/or
with a van der Pol restoring force acting on the wing and modeling sfabilizing nonliheax
aerodynamic effects. It is indeed found that the friction can stabilize an otherwise
unstable aeroelastic system, especially when the natural frequency of the wing and
sliding masses considered alone are close together. Periodic, aperiodic, and chaotic
mqtions of the wing are observéd and diScussed. The presence of continuous slip, stick-
slip, and stuck motions is also demonstrated and analyzed. Finally, predictions from the
harmonic balance method are shown to match well the amplitude of continuous slip,
periodic motions.

This theoretical work was complemented by a series of tests conducted in the
tfansonic wind tunnel of the Deutsches Zentrum fiir Luft und Raumfahrt (DLR) m

il




Géttingen, Gerfnany. The design of the friction test article, its preliminary validation in
| the ASU vibrations laboratory, and the final wind tunnel testing are presented and

discussed. The wind tunnel results demonstrated a slight stabilization effect of friction.

v
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CHAPTER 1 | _
INTRODUCTION

Several modern aircraft, mos_t notably‘some fighters w_ith external stores, have
been found to exhibit Lirhit Cycle Oscillations (LCO), i.e. >' sélf—sustained vi‘brationsy. |
‘Clearly, these vibrations are undesirable from all perspectiveé: they‘ affect the comfort of -
the pilot and/or passéngers, they may negatively impact the accuracy in shooting, and '

‘ generally produce fatigue in the aircraft structure. Accordingly, a series of investigations

have focﬁsed on explaining the occurrence of these limit cycle oscillations in aircraft and

it is generally recognized that these vibrations occur in the neighborhood of flutter. They

further have been classified into supercritical (or hard) and subcritical (or soft) limit

cycles oscillations with the critical point being flutter. Supércritical LCO’s thus appear at
' flow/flight speedsblarger than the flutter speed while their subcritical coﬁnterparts occur -
.l’)elow flutter speed. Both supercritical and subcritical LCO’s are the manifestation of a
vnonlinear aeroelastic system, as a linear damped aero-structure model can only exhibit a
décay toward rest or an explosive, divergent behavior. Thus, paramouht to LCO
discussions is the origin, aerodynamic and/or structural, and nature of the nonlinearity

pfesent.

Nonlinear aerodynamic effects have often been invoked, e.g. the transonic shock
separation mechanism'? in the context of the F-16, but structural nonlinearities have also
“been discussed. Most often considered have been the large deformation stiffening (as in
panel flutter®), and freeplay®’. The work by Chen et al.5 and Mignolet et al.” suggested
however that a different rhechanism, specifically friction, could qualitatively explain

many of the LCO findings associated with the F-16. Interestingly, such an explanation is
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~ also supported by studies vperformed on turbomachine blades® that demonstrated that

friction can, in certain conditions, stabilize flutter and lead to supercritical LCO. A recent
investigation has also shown the value of friction to damp out the effects of gust'.

In this light, the focus of the present investigation and of a related one“_ is to

~conduct an in-depth study of the effects of friction on a class of aeroelastic systems
- exhibiting either explosive flutter or limit cycle oscillations. A distinguishing feature of

the wing/wing-store system considered here is that the friction mechanism must be

internal to the system, i.e. no rubBing takes place between éomponents separately
supported ‘(efg. between two blades of a rotor) but rather the components in relative slip
must be mounted on the wing (or be the wing itself). In keeping with the
phenbmenological aspect of fhe present investigation, the analysis was conducted under
the following structural sirﬁpliﬁcations.

) R The friction effects will be assumed to 6riginate from a single, rigid

component moving relatively with respect to the wing and to be characterized by a

- preload N and coefficients of friction x and .

(ii)  The changes of external structural geométry that occur due to the relative
sliding will be neglected. This assumption appears justified as all aircraft components are
subjected to a large preload so that a large amount of energy can be dissipated with 6n1y

small relative motions at the joints. Accordingly, there will be no direct effect of the

moving component on the aerodynamics.

Combining the above two assumptions led to the introduction'! of an airfoil

model with internal friction, more specifically with a block sliding in a rough track, see
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Fig. 1.1. Wﬁile thé behavior of this system was shown. to exhibit sevéral of the
characteristics expected from friction, it was also found to be very sensitive to the change
of inertia that. occurs as the block is moving along the track. In fact, it was noted thét a
static displacement of the block in the track provided a. significant stabilization property
which rendered extremely vdifﬁcuit the assessment of the effects of friction. This situation
was then remedied'? by assuming that the rigid component of Fig. 1.1 is a disk that spins
a;ound its center of mass inside therairfoil, see Fig. 1.2. Note thatvthis new model does

satisfy, as well as its bcounterpart from Fig. 1.1, the simplifications (i) and (ii) above. |

Fig. 1.2 Aeroelastic system with rotating disk.

In this overall context, the specific objectives of the present effort are twofold.

First, a thorough analysis will be conducted on a purely structural dynamic model
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representative of the aeroelastic systems of Fig. 1.2 to assess the potential of friction to
stabilize an explosive flutter and reduce the amplitude of existing limit cycle oscillations.
This stuciy will alsé concentrate on the propertiés of the responsé of the System and on the
influence of many of the parameters involved. The secoﬁd objective is the design,
fabfication, and testing of a friction device similar to the torsional spring énd disk of Fig.
1.2. The preliminary testing of the device was successfully accomplished in shaker tests

“in the ASU Vibrations Laboratory. Then, its final testing took place in the DLR transonic
wind tunnel mounted on a NLR 7301 airfoil undergoing limit cycle oscillations around

Mach number 0.6.




CHAPTER 2

TWO-DEGREE-OF-FREEDOM DYNAMIC MODEL

| ‘_ .The focus of this part of the investigatioh is on gaining a basic physical
undérstanding Qf fhe effeéts of friction on the stability/response of aeroelastic systems.
Given that very little is known about this fopiq and that friétioﬁ inevitably brings out
compléx nonlinear characteristics, it was decided here to select the simplest dynamical
"model that would exhibit the features of the pfoblem. Friction in aircraft must take place
between tw§ components of the aircraft, as opposed to, for example, the wing and the
ground. A t\No-degfee-of-freedom thus seemed the lowest order system to be considered.
The components of a wing are well fastened together and thus one expects that a relative

motion can only be of a small component. Thus, the “sliding” mass (M, below) must
have a mass much less than the wing mass (M, ). It remains to discuss the “aeroelastic”

.modeling. In keeping with the novelty of the topic, it was bdec‘:ided to construct a
* mathematically simple aerodynamic model that would exhibit the noted explosive flutter
and limit cycle oscillation behavior. These possible behaviors ére included in the model
through a dashpot of negaﬁve Yalue in parallel with a van der Pol restoring force. The
negative dashpot allows unstable motions to grow, as in a explosive flutter case, but the
van der Pol forcé‘, if present, reinstates stability at sufficiently high levels of response.
Finally, deformationé of the components were allowed by the inclusion of springs. The
general model to be cqnsidered here is thus represented in Fig. 2.1.

In a series of papers, Tond]'**® investigated a more complex version of Fig. 2.1 in

which a structural damper also exists between the two masses. His approach, based on
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harmonic balance (see séétion 2.4), presented only limited information and was restricted
by the necessary assumptions‘ of periodic and continuous slip motions. Unfortunately, as
will be found in thé ensiuing sections, these assumptioﬁs are #pplicable only in an
extremely limited set of cases so that the results of References l.l-ll3 neither carry.the
’ ,genérality nor the accuraéy required here.

It should finally be noted that the Structural components of the models of Figs 1.2
and 2.1 (i.e. without aerodynamics and without the déshpot ¢ and van der Pol term 9) are
ig fact very much alike, they are identical if the plunging motion (vertical displacement)

of the airfoil is neglected. In this case, the displacements x; and x, denote the pitching

~ and disk angles, the masses M, and M, are in fact the corresponding inertias, and % is

the torsional spring stiffness.

A -

/ me C;

/ — m
—T— my ———V;— 2

. d - '

' Fig.2.1 2DOF system with full coupling

- 21  Computational Details
* The system in Fig. 2.1 would be considered a linear system if it did not contain
the Coulomb frictién element. Friction adds significant complexity to the simulation of
thé system in that »it can completely or partially inhibit the relative motion of the two

masses and that it switches direction abruptly as the relative velocity changes sign. In




7 .
fact, during unidireétional (no velocity reversal) slip phases as well as stick phases, the
equation of motion of the system are linear, so that the nonlinearity is wholly
| concentrated at the transitions. These observations emphasize the need to accurately
capture the transition of vstavtes (stick-slip, slip-stick, slip-slip). To this end,ithe time step
was reduced in the neighborhéod of these transitions by a factor as large as 128 through
successive halving. Further, the equations of motion were integrated numerically using
the IMSL routine DIVPRK (Runge-Kutta of orders 4-5) with a low tolerance of 107
(both relative and absolute errors) and a time step typically smaller or equal to 0.01 s

while the fundamental linear frequency is close to 1 radian per second.

2.2 Assessment of Friction on an Aeroelastic System Exhibiting Explosive Flhtter
-The analysis of the 27degree-of-freedom system was conducted in two separate

steps. It was first analyzed‘uﬁder the assumption 6 =0 which implies that no nonlinear
stabilizing aerodynamic effect e)‘dsts.. Accordingly, the linear system (without friction)
exhibits only an unstable behavior typical of explosive flutter. The considerations of
stabilizing nonlinear aerodynamics, i.e. § #0, will be conducted in Section 2..3. Two‘
separate cases were further considered with § =0, i.e. £=0 or k=0. Under the first
condition, the 2-degree-of-freedom system obtained in slip phases is classically damped
(at the contrary of the sit_ﬁation k,#0) and an exact formulation (EF) of the responsé can
be derived without too much difﬁculty. This approach, as well as a direct numerical

simulation, (NS), of the equations of motion were thus performed for k,=0. In the second
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step, nonzero values of &, were considered but only the numerical simulation was carried

out.

2.2.1 . Primary-Secondary Coupling Through the Friction Element Only
The system under consideration in this section is the 2-degree-of-freedom (2DOF)

system shown in Fig.2.2.

/) ——
7 Xy 2
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Fig.2.2 2DOF system with friction coupling.

- 2.2.1.1 Exact Formulation
Folléwing Den Hartog'® (see also Pesheck and Pierre'’), a periodic solution of the
equations of motion can be obtained by marching the solution from unknown initial
conditions at # =0 to an unknown time 7 at which periodicity conditions are enforced. .
Such an approach_can be used for continuous slip behavior as well as solutions with
stick-slip but the number of stick-slip phases must be chosen a priori. This process
trahsforms the soluﬁon of the nonliﬁear differential equations into the solution of a set of

nonlinear algebraic equations for the unknown initial conditions, period (or half period

T), and stuck times ¢, if applicable. This process is exemplified below on the system of

Fig. 2.2
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Since; the equétions of motion of the system of Fig. 2.2 are time invariant, the time
t=0 éan be arbitrarily Selected. ‘Theh, assume for convenience that this time corresponds
_ ‘tvo a sﬁck-slip or slip-slip‘ transition. Thus, the initial conditions were selected as
#,(0) = %,(0) = vy; x,(0)= x,, and x,(0) = x,,. @1
Dﬁring the eﬁsuing slip phase, it‘ is assufned that %,>x, so that the response is described
By the equations of motion
M %, +ck, + kx, = F,, and széz =-F, C(2-2)
where
Fy = mpNsgn(t, - %) o (2-3)

The response of the two blocks can thus be expressed as

x (t)= e |4, COs w,,t + B, sin wh,t]- —‘[-ID?N— S (2-4)
and
Uy N
x,(t)= —-——2342 12 vt + Xy (2-5)
where

’ k ’ CM ! ’ !
oy = A—/[—;Q:z/w—,l‘;w‘n‘—'wz\)l—éz (2-6)
. \ M, 2

A =x +ﬁlﬂ;3 N taod, @2-7)
2 Hy 2 '
k @y,

If a continuous slip solution takes place, the unknown initial conditions in Eq. (2-1) and

the half-cycle time T will be evaluated from the periodicity conditions

x(T)=-x,0)= x5 %(T)=-%(0)=—,; £(T)=-%, (0)."' Vo - (2-8)
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Enforcing these constraints leads to a nonlinear equation for the half-cycle time 7 and
. ensuing linear equations for the unknown initial conditions. Specifically, imposing the

periodicity condition at T for %, yields

M—T:—2VO. . ‘ | ’ o (2-9)
M2 . '

The periodicity conditions for %, and x,, respectively, yield

, :
Cl); : ’ _ §105T ' ;w; : ’
Ayl —=—sinaw,,T | =v,| e"** +cosw,,T — sinw,,T (2-10)

!
@y, Dy

“and

A{e'“‘”g(cos o', T + €2% Gin a)",zT) + 1} + Y0 g GieiT sin@},T =~ 24 I?N . (2-11)

a2 @y

Combining Eq. 2-9-2-11 then results in thebsingle nonlinear algebraic equation for‘the
,. half-period T

" 2rsinw,T + ), Tlcos ), T +cosh &4, T]=0. 2-12)

A stick-slip solution was also obtained. The transition from slip to stick was

assumed to take place at time ¢=1, such that the relative velocity of the two blocks
vanishes, i.e.

xl(to)"xz(to)=0. (2-13)

or

- o . 3 | -——-—-—N
e ~Si%iH [vo cos @'t —(550);32 + A, )sm wfzzto] = #A; ty +v,. (2-14)
2

After the transition, the slider sticks and the sYstem is governed by the equations of

motion
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(M, + M, +c% +lo, =0 and %, =%, - (2-15)
The cofresponding response can thus be expressed as

x,(t) = e [4, cos ), t + B, sin ), ] o - (2-16)

. k
S
 + M,

' M+M ' '
Cl=C/( 1 - 2);wd1?wl 1_412;

20,

~ where

4, =x,(t0) and B, = xl(to)+§1w1x1(to). - (2_17)' »

14

WDy

22.1.2 Nuﬁlex‘iéal Results )
A parametric study of the 2-degree-of-freedom system \mth k1‘=0 has revealed
'that the internal friction mechanism stabilizes the unstable aerodynamics and leads to
LCvaor a broad range of negative damping ratios (see Fig. 2.3). Further, the responé.e of
the system was found to exhibit many of the features already observed in connection with

the 1.5 degree-of-freedom system®”"!’

, €.g. at most one stable solution_was observed in all
cases considered, an upper-lower branch structure exists in the plot of amplitude versus
damping, Fig. 2.4 (the lower branch is stable and denoted by S while‘ the upper branch is
unstable and denoted by U), and the solutions were both periodic and symmetrié..
However, at the contrary of that simpler system, the two-degree-of-freedom model with

k, =0 displays two types of LCO solutions: continuous slip (CS) and stick-slip (SS, a

single stick phase per half-cycle).
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While the unstable solutions were all characterized by a continuous slip behavior,

the stable motions were primarily corresponding to a stick-slip behavior although a small

zone of stable continuous slip responses were observed near the largest stabilizable
darhj)ing rétio. The results obtained with the exact formulation matched very closély their
nurﬂedcal Vsimulation‘countérpar-ts even in a stick-slip motion'®. |

" The results shown in Fig. 2.3 and 2.4 were obtained for a typical friction setup
(ys=y0% 0.25, N=1, k=1) but for a rather large mass ratio, i.e. M,=l, M,=0.25.

While the phenomenological features described above were found to also hold at much

~ lower values of the secondary/sliding mass M ,» it was found that the largest stabilizable

damping ratio is approximately proportional to the mass ratio, r=M,/M,. A relationship |

between the damping and mass ratios is now desired to fully understand Fig. 2.4. To this

end, the condition of Eq. (2-12) was reconsidered and it was argued that the largest

~ damping ratio is such that (see also Fig. 2.4) |

= =0 or —22=0. (2-18)

Thén, differentiating Eq. (2-12) with respect to T and using Eq. (2.18) leads to

! 14 ’ r
2rcos@’,,T +cos @', T + cosh({ @, T)

+@5,T [-sinw!,T + ¢, sinh(¢0),T)] = 0. @-19)

Equé.tions (2-12) and (2-19) can be simplified as
2rsinu +ulcosu +coshpu]=0 (2-20)
2rcosu + cosu +cosh7u —usinu + usinhu =0 (2-21)

where
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’

u'=a)",2T, &y, T = 62 u=nu. (2-22)

J1-¢2

It is then desired to solve Eq. (2-20) énd (2-21) for the damping ratio and half-period, i.e.

for u and 7 given r small. When the mass ratio goes to zero, it is expected that the

_ maximum stabilizable damping is zero and thus that there exists a solution of Eq. (2-20)

and (2-21) with » = 7= 0. It is indeed the case and requires that ¥ = 7. For small but

nonzero mass ratios, a perturbation analysis will be carried out with

u=rw+a. (2-23)
In fact, it is found that
—2ra+%(a2 spirt)=0, @24
a2 (2-25)
T S : ,

~In terms of the half-period and damping ratio, these results imply

T=r+2 (2-26)
/2
and
€2). o —=s z-zfz- for r<<l. (2-27)
2JkM, ) T
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According to this relation, a 2% damping ratio stabilization would require a mass
ratio » of at least 0.1, a larger value than would be expected to be fypical of the F-16. A

larger stabilization capacity of the two mass system of Fig. 2.2, and thus potentially a

lower mass ratio, would require an increased relative response of the two masses. Such an

.increase can be achieved by increasing the transfer of energy between the two masses. In

view of the primary-secondary nature of the system, it is expected that the difference in
the natural frequencies of the primary (, =/k/M, ) and the secondary (w,=0 for the
system with k=0) will be the dominant parameter controlling the energyb transfer.

Further, a maximum transmission could be conjectured to occur when o=@, .

- 2.2.2. Primary-Secondary Coupling Through the Friction Element and a Spring

/] ‘ -
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Fi‘g. 2.5 2-degree-of-freedom system with friction and stiffness coupling.

In this section, the stiffness &, was varied from zero and the system response was
obtained by numerical intégration. A series of values of the stiffness k&, and of the
damping coefficient ¢ were considered with the mass ratio »=0.05 and the single set of

initial conditions X, (0)=X,(0)=0.1 and X,(0)=X,(0)=0.




The wealth of ‘results obtained (sée Fig. 2.6) has shown, first and foremost, that .
the above conjectures were perfectly valid. indeed, each of the dots on Fig. ‘2.6(a)
indicates a stable soiution and thﬁs: | |
’ 1) an increased stabilization capability is possible by vafying the natural frequency of
tﬁe sliding mass alone, and |
2) the maximum stabilization possible appears to take place when w=w,, or

equivalently k,=r=0.05 here since % is set to unity.

In analyzing these results, it could be argued that the increase in stabilization
could simply be a result of an increase in stiffness and a corresponding reduction of the
~ (negative) damping' ratios of the system since it is the dashpot value ¢ which is fixed.
These comments suggest that a more definite proof of the increas‘ed stabilization would

" require the analysis of the most negative damping ratio for each of the stable systems of

~ Fig. 2.6(a). This effort yielded Fig. 2.6(b), which also displays the trends stated above,

thereby demonstrating their validity. Note further that the largest stabilized damping ratio
observed was 3.5% which is almost twice what is required for the F-16° while the mass
ratio of 0.05 is quite reasonable. It is then concluded that the proposed friction based
LCO mechanism is indeed possible.

Having established the existence of an increased domain of stable solutions, it is
important to assess the phenomenological characteﬁstics of these solutions and to

compare them with those obtained with %,=0. In fact, four different types of solutions
were observed when k,#0 that can be characterized as single frequency stick-slip (SFSS),

single frequency continuous slip (SFCS), multiple frequency stick-slip (MFSS), and




18
multiple frequency continuous slip (MFCS). The term single frequency is used here
somewhat freely to des.cribe a solution with a simple period and.with minimal harmonics,
. see fig. 2.7 for such a solution (continuous slip example). Note in particular that the |

magnitude of the third harmonic of the response of the mass M, is only l%b of its

~ fundamental counterpart. For compaﬁson, “multiple” frequency solutions, see Figs 2.8

and 2.9, exhibit a beating i)henomenon (see Figs 2.8(a) and 2.9(a)) that is associated with
| the presence of two frequencies close to the dominant one, see Fig. 2.8(b). The
corresponding phase plane plots (Figs 2.8(b), 2.9(c)) clearly show the complexity of these
motions as compared to the single frequency solution, see Fig; 2.7(c). A different
perspective into the phase plane features can be obtained by éampling the time histories at
specific times. In forced fesponse problems, the sampling is accdmplished every cycle of
the excitation but in the present self-excited problem, it was found convenient to monitor
the displacement and velocity of mass M, when the felative motion achieved maximum
values. The corresponding sampled phase plane plots are shown in Fig. 2.10. For a
periodic motion, only a single dot appears, as seen for the SFCS solution. The MFCS
solution on the contrary leads to a close curve While the MFSS solution is characterized
by a similar curve and a densely populated domain. It is fentatively concluded from those
figures that the corresponding MFCS and MFSS solutions are aperiodic and chaotic,

respectively. Note that the difference in behavior between &, = 0.039 and 0.040 was not

easily detectable from the time histories and/or full phase plane plots but is quite clear

from the Poincare-type plot of Fig. 2.10.
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It was next désired to analyze the,“magﬁitude” of the response as a function of the
stiffness %, and the damping constant c. Since an amplitude cannot be properly defined
iﬁ the multiple frequenéy situation, it was decided to study the highest level of response
obtained in the steady state part of the computed response instead, see Fig. 2.11. Note
that the curves are not plotted continuouﬁly at the change of solution tjbe, i.e. from singie
to multiple frequency and vice versa. The general tendency of these curves is that the
level of response decreases from the edgeé of the stable zone toward its center
k, =r=0.05, as expected from the increase in energy transfer. Further, the largest
response is substantially increased by thé beating phenomenon of Figs 2.8(a) and 2.9(a),

i.e. as the solution switches from a single to two dominant frequencies.

2.2.3 Changes in Solution Types — Bifﬁrcations
The arrangement of the 4 solutions types in the ¢ — ki or {; —k, domain, see Fig.

2.6, is very interesting. Néaf the edges of the stable zone, it appears that the single
frequency solution only is present. Further, it exhibits a stick-slip (SFSS) behavior only
for the smallest values of the negative damping and a continuous slip (SFSS) through
most of the domain. This observation is physically expected as a continued slip is likely

. to provide an increased dissipation and in that respect is consistent with the k =0
findings of Fig. 2.4(a). As the stiffness k, is varied (increased or decreased) toward the
center of the stable domain (k=~r), a change of solution takes place and the single

frequency solution switches to a multiple frequency one, first maintaining the continuous

slip (for sufficiently large negative damping), then exhibiting stick phases.
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The appearance of the multiple frequency solutions, not seen in the simpler,

k=0 case, may be associated with the two natural frequencies of the linear system.
Indeed, for small mass ratios and for values of % =r, the two system frequencieé are
close to each other and could be producing the tightly sﬁaced p.eaks of Fig. 2.9(b).
Furthér, when £k, is exéctly equal to r, fhe corresponding (negative here) damping ratios
are also equal so that contributions of both linear modes to the response Would be
certainly be expected in this case. As the stiffness &, deviates from the mass ratio r, the
two damping ratios rapidly differ from each other so that the response should emphasize
- more heavily one of the two modes, i.e. the one characterized by the most negative
‘ damﬁing rétio. These observations provide a tentative explanation for the presence of
three dominant frequencies near the ceﬁter of the sfable domain, i.e. k, = r, but only one

frequency near the edges of this region as seen in Fig. 2.6.
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Fig. 2.7 A typical "single" frequency continuous slip solution, M, = 0.05,
k, =0.06, c =-0.07.
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A more fofmal appro‘ach can bei undertaken to better bclan'fy the transition,

 bifurcation in fact, of solutions fromr single to multiple frequencies. This approach,

reféﬁed to as Floquet analysis'®, relies on the availability of the periodic, steady state

solution at a time #, x(¢). If the equations of motion can be linearized around this steady

~ state solution, the response after one cycle, x(¢)+ 8x(s + T'), corresponding to an imposed
- perturbations at the beginning of the cycle, i.e. 8x(¢), can be expressed as

8x(t+T)= P 3x(t). » (2-28).

In this equation, P is a square traﬁsition matrix which can be identified by proceeding in

turﬁ with small perturbations of each of the state variables (4 in the present context) and

computing the corresponding pertur;bed solutions after one cycle. Repeating the argument

of Eq. (2-28), the perturbation after » cycles is related to the original one, 8§(t), by the

‘matrix P". Then, the steady state solution g(t) will be stable, i.e. the effects of the
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perturbation 8x(r) will disappear as t —» o, if P" — 0 when n — ‘or equivalently if -
the eigenvaiﬁes of P are all less than 1 in magnitude.

This fesult ié valid in forced vibrations c‘ases in which time‘ is defined by the
excitation. In self excited probléms however, it is possible for the perturbed solution to
converge to the unperturbed steady state response butb time shifted by &z. In fact, this
situation occurs‘ for 6;_(t)= £(t) 5t as x(t)+5x(t) is then sirﬁply gc_(t+$t). Thus, after
one period, the perturbed response is E(t +8t+T)=x(t + St) from the ISeriodicity of the
exact steady state solution. From this relation, it is thus concluded that an eigenvalue of
+1 should always be present in P m self excited problems.

"The estimation of the matrix P was performed for ¢ = -0.07 and a series of values
~ of ky for which a single frequency solution is encéuntered, i.e. .kl e.(0.34, 0.3885] and the
corresponding eigenvalﬁes (complex and imaginary parts) are plotted in Fig. 2.12. The
persistent eigenvalue at +1 is clearly seen and so is the convergence of two eigenvalues:
toward vthe unit circle as k; — 0.3885. From this last observation, it is tentatively
suggested that the transition from a single to multiple frequencies is a Hopf bifurcation.

Considering this data for monotonically decreasing values of &; provides also a
perspective on the loss of stability that occurs for k; =~ 0.34. Specifically, it is noted that

the real eigenvalue of value <1 is slowly progressing toward the unit circle, suggesting

that the loss of stability is accornplished through the occurrence of a double eigenvalue at

+1.
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2.3 = Assessment of Friction on an Aeroelastic System Exhibiting Post Flutter

LCO

2.3.1 Primary-Secondary Coupling Through the Friction Element and a Spring
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Fig. 2.13 2-degree-of-freedom system with van der Pol force.
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~The shﬁple system of Fig. 2.5 does not exhibit limit cycle oscillations in the -

~absence of friction, its response exponentially increases as time grows. It was thus

necessary to add another stabilizing factor to induce limit cycle oscillations in the

- absence of friction. One such term often encountered is a van der Pol (vdP) force which -

18 propdrtional to the pfoduct of the square‘ of the displacement and the veloéity. This -

additional force was assumed to act on the primary mass, see Fig. 2.13, yielding the

equations of motion

M, %, +c(l-6x2 J, + (e, x, K, x, = Fy, (2-28)
and
M3y~ x, +k,x, = —F, ' (229
where o |
F, = upNsgn(x, - %) during slip ' (2-30a)
|Fyy| < 5N during stick. D (2-30b)

A nondimensionalization of the equations of motion provides significant insight into the

behavior of the system. To this end, introduce

o=JkI M, ; o,=Jk | M, ; =M,/ M,;

=yt y=x,(k/ upN),i=12;

C=cow, | 2k; 5=6k*1 A N?; Tu=k, / k.. (2-31)

Then, the equations of motion, Eq. (2-28)-(2-30), can be rewritten as

¥ 2232 by + (4 Jy, Ry, = Fa (2-32)
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rys-kiytkiy, =—Fn ~ (2-33)
where ()’ deﬁotes the derivative with respéct tot, k
| 'F_n —sgn(y, - y!) during sli;) - | (2-34a)
N [Fai| < ptg/ p, during stick. o (2-34b)

Note in particular from Eq. (2-32)-(2-34) that the amplitude of response is

proportional to g, if pg;=p, and 6 =0. Further, this property also holds for nonzero

-values of & provided that &8 is held constant.

As in the previous section, a ﬁumericél approach was adopted to study the
respoﬁse of the system. AS beforé, M, and M, were selected to be 1 ahd_0.0S, and k was
set to 1. Furthe;, the static and dynamic coefﬁciehts of fn'ctioﬁ were selected equal,
ug=pp = . The other pafameters were varied to prqvide a thorbugh perspective on thé
response of the system.

The system of Fig. 2.13 was analyzed with different values of the van der Pol
constant 6 and the amplitude of response and stability plofs for each of these values was
generated. Shown in Fig. 2'.14_2.17 are the results corresponding to 6=0.025 (Fig. '2.14
and 2.15) and 5=0.04 (Fig. 2.16 and 2.17). To clarify the discussion of these figures,
note first that the van der Pol system is stable for all cases considered and thus
stabilization must occur for §> 0. Further, the response of the van der Pol system without

friction is a single frequency (continuous slip) solution.
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Fig.2.16 Largest response of mass M, as a function of the stiffness &, for different
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Comparing F1g 2.6(@), 2.15, and 2.17, it is first seen that fhe unstable regions of .
- Fig. 2.6(a) are replaced by stable single frequericy continuous slip motions characteristic
of a van der Pol dominated response. Note further that the domain of multiple fréquency
- solutions shrinks as & is increased leaving moétly single frequency motions. This finding
may be explained by noting that the multiple freqpency solutions typicaﬂy lead to large
- amplitudes because of the beating, see Fig. 2.11. For such large amplitudes however, the
stabilization of theb van der Pol term is significant forcing a decrease, and eventually
disappearance, of thé beating effect. The decreased preseﬁce of the multiple frequency
- solutions is also visible from the amplitude of response plots, Fig. 2.11, 2.14, andv2.l6,
where they imply higher amplitudes than the neighboring single frequency solutions.
Notice on these same figures that the sharp transitions to instability in Fig. 2.11 are
vreplaced by smooth increases toward the arhplitude corresponding to the van der Pol |
alone.

| Another change in the character of the solution concerns the transition from stick-

slip to continuous slip. It can be seen from Fig. 2.6(a), 2.15, and 2.17 that stick-slip
solutions typically occur at low values of the negative damping ratio and correspond to
smaller response level for which the dissipation during the slip phase is sufficient to
stabilize the motions. Continuous slip solutions on the contrary appear at higher response
levels where the amplitude of resi)onse is lé.rge enough to force the continuous motion of
the sliding block. It is seen from Fig. 2.15 and 2.17 that the value of the negative
darﬁping ratio at which the stick-slip to continuous slip transition occurs increases (in

magnitude) as the van der Pol parameter & is increased. This result is in fact expected as
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an increase in & promotes stability and forces iower response levels thereby févoring o
 stick-slip solutions. An increase of the damping constant (lafger négative) must then take
place to iﬁcrease ,thé energy introduced in the system and to induce a continuous slip
- bel‘layior.i
" The V-shape of the ampurﬁde plot, slightly visible for 5=0 (Fig. 2.11), ‘quite'
vc‘lear for 6=0.025 (Fig. 2.14), and obvious for‘r 0=0.04 (Fig. 2.16), demonstrates that an
amplitude of respdnse substantially below the van der Pol alone level canrbe achieved
| with frictibn. Thus, friction can also piay an important role m reducing the level of
response of existing limit cycle oscillations. Note further that friction is most effective
when k= 0.05, especially for large negaﬁve damping ratids, as waé already noted in the
' ‘previous section.
Thé above discussion has focused on the behaviof of the response as a function of
o, ¢, and k; for a fixed yalué of u(= 0;25) and it is now désired to assess the role of the
friction coefficient. To this end, the value of & was sét fo 0.06 and the response of the
system of Fig. 2.13 was determined for two damping coefficients, i.e. ¢ = -0.04 and -
0.09, as function of % and u. Surprisingly, in was found for both values of ¢ that two
| stable solutions exist for low coefficients of friction, see Fig. 2.18 and 2.19. Each of these
. two solutions essentially involves a single stabilization factor: the very low amplitude
“solution is associated with the low fn'ctibn coefﬁcient Qithout any significant effect of
the van der Pol term. In such conditions, a stable sohition must exhibit a small amplitude
as the low level of friction will not provide much dissipation. At the contrary, the large

amplitude solution is only marginally affected by the small frictional term and it is
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| bﬁrﬁarily the van der Pol force that dictates the résponse.' As the coefficient of friction
increases, its effect on the high amplitude solution increases implying a decrease of the
respoﬁse level. Further, a higher coefficient of friction provides a balance of the unstable
aerodynamic forces at higher amplitude levels. Thus, the amplitude of the lower (resp.
'-higher) solution increases (resp. decreéses) until they both merge into a single one
‘ solution as seen in Fig. 2.18 and 2.19. The value of the céefﬁcient of friction at which the
»merging of the solutions occurs is a particular good operating.point as it yields the
smallest value of Athe maximum stable solution. Note further that the existence of two

solutions occurs at high negative aerodynamic damping only when the natural

- frequencies of the two blocks alone are identical or almost so.

232 Primary-Secondary Coupling Through the Friction Element, a Spring, and a

. Dashpot

Dissipation associated with the relative motibn of the two masses may include
more than just friction, most notably viscous effects, and it is finally desired here to
assess how the i)resence of an additional damping mechanism would affect the
conclusioﬁs drawn in connection with the éystem of Fig. 2.13. To this end, a dashpot
(viscous element) was added between the two masses, see Fig. 2.1, and a parametric
study of the response magnitude and character (i.e. single vs. multiple frequency and
continuous slip vs. stick-slip or stuck behavior) was undertaken. - |

It was demonstrated earlier that the coincidence of the natural frequencies of the

primary and secondary systems is a particularly critical condition since it leads to a
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maximum transfer of energy from the primary to fhe secondary where it can be dissipated .
by friction. The effectiveness of the frictional device is thus maximum in that
conﬁgurétion. Accordingly, thé bresent sfudy of thé effects of the damping coefﬁcienf ¢
was perfdnned ugder this matching requirement, i.e. jwith k, =0.05. Finally, the ’v
, coefficients of friction :were selected to take on fhe representative values g =g, =0.25
and the van der Poi paramefer was chosen as the intermediate value of & =0.025. The
steady state response of the system of Fig. 2.1 was then computed for a series of values of
¢, and ¢ and the largest réspohse (e.g. the arhplitude of the motion in “single” frequency
solutions) as well as the ch.aracter of the solutions (i.e. single vs. multiple frequency,
continuous slip vs. stick-slip vs. stuck configuration) was recorded, see Fig. 2.20 and
2.21. |

It should first be notéd from Fig. 2.20 the existence of a minimum value of the
largest response of the primary mass at some intermediate yalue of the damping
coefficient ¢,. When c¢, is less than this threshold, it woﬁld appear thaf the friction and the
dashpot reinforce each other to provide an increased dissipation and correspondingly a
reduced response. A more refined perspective on this effect may be obtained from the
classification of the various solutions involved, see Fig. 2.21. Specifically, it is seen that
there exists a thin layer of values of ¢, near ¢;= 0 in which the character of the solution
changes rapidly, from multiple to single fr.equency.v In fact, a comparison of Fig. 2.20 and
2.21 indicates that it is also in this small zone that the largest response decreases.

It is thus concluded that this decrease goes hand in hand with a change of

character of the solution, from multiple to single frequency. To complete the analysis, the
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time histories of the response of the primary sttem (mass M) were inspected fbr values
of ¢, in ihis thin layér, i.e. for ¢, € [0,0.001], see Fig. 2.22. It is clearly seen from these
figures that the decrease of the largest response is in fact assbciated with é decrease of the
o ‘lével of beating, not with a noticeable decrease in 'the mean of the steady state response. It
- remains then to explaih how this change of charactér takes‘ place and why it is so
sensitive with respect to c,.

In this context, consider the plots of the largest. response and the corresponding
classification obtained with ¢, =0, see Fig. 2.14 and 2.15, and note that the multiple .
frequency solutions only exist in a narréw zone of ‘stiffnesses k, around k, =0.05. It was
‘ afgued earlier that the appearance of the beating is associated vﬁth a Hopf 5ifurcation in |
which an eigen?élue of the perturbed problem reaches the unit circle. Damping nafurally
provides decay over a given timé aﬁd thus forces thése eigenvalue away from the unit
circle, toward the origin. For ¢, large enough, i.e. 0.001 in the case considered, the largest
eigenvalué never reaches the unit circle and the single frequency solution is maintained
throughout. Two more observations can be made in this regard. First, a minimum of the
largest respohse does not occur, see Fig. 2.14, for the two least negative values of ¢, ¢ = -
0.02 and -0.03, consistently with Fig. 2.15 since the corresponding solutions for ¢, =0
are both single- ﬁéquency. Finally, note that the amplitude of the single frequency
motions for ¢;= 0.001 and k= 0.05, i.e. 6.7-6.9 (see Fig. 2.20), are very close to the
interpolation of the values obtained from Fig. 2.14 for ¢,= 0 and k= 0.04 and k= 0.06
suggesting a continuity of the solution as a function of %, in the absence of multiple

frequency bifurcation.
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The above discussion has clarified the behavior of the solutioﬁé for small values
of Ci but has not addressed the increase in response observed in Fig. 2.20 for ¢;> 0.001.
In fact, itr was »foundk that the increase in damping of the relative motions of the two blocks
'leéds >primarily to a decrease of the amplitude of these motions and that the decrease is -
large enoﬁgﬁ to decrease the energy dissipated per cycle, even with the increase of | .
Thus, the amplitude of response of the primary mass must increase as noted in Fig. 2.20. _
The decrease of amplitude of the relative mdtions also increases the likelihood of a
_‘ sticking and ﬂms justifies the continuous slip to stick-slip transition that is observed on
- Fig. 2.21 for all ¢ values as ¢; increases. For very large values of ¢y, the two blocks stick
together.and the motion is ’governed by the negative dashpot ¢ and the van der Polb
B festoring force.

It was desired to confirm the above observations in anotﬁer situation, namely for a |
different value of the van der Pol coefficient 6. To this end, the computations were
repeated with § =0 and the results, largest response and classification, are presented in
Fig. 2.23 and 2.24. The narrow zone in which both transition from multiple to single
frequency and decrease of the l.argest‘response occur is again present, albeit broader in
Fig. 2.23 and 2.24 as compared to Fig. 2.20 and 2.21. Further, the ensuing increase of the
amplitude of resi)onse aé the damping coefficient ¢, is increased vis also shown. All

results thus appear consistent with those of Fig. 2.20 and 2.21.




Fig.2.20 Largest response of mass M, as a function of the damping coefficient ¢,
~ for different values of the damping constant ¢, k, = 0.05, 6=0.025, and x=0.25.
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The above findings and discussion demonstrate the béneﬁt of a small viscous
‘damping in addition to the friction as a mean of controlling the solution character, more
notably the single to multiplé frequency bifurcation. A larger viscous damping is

- however not advisable as it leads to a reduction of the dissipation potential of the

secondary system.

Having established the role in friction alone and in concert with a viscous
damping elemenf, it is desired next to evaluate the stabilization potential of the viscous
element alone. To this end, the computations were reiterated but for p =0 with 8 = 0.025
and fhe corresponding amplitudes of the rebsbponse of the primary mass are shown in Fig.

2.25 as function of ¢, . Interestingly, it is found that the steady state amplitude is zero for

a finite range of values of ¢;, ¢ €[0.009,0.018] for all values of ¢ considered,
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‘demonstrating that the equilibrium position is then stéble even with the presence of the
© negative déshpot ¢. The study of the Iineadied system (i.e. without the van der Pol term)
" is appropriate to eXplain thisv behavior and‘ac'cordingly, the complex mode shapes and
eigenvalues of tﬁe linear, non-classically damped 2-degree-of-freedom system were 'A
determined. At low values of ¢;, both mode shapes iﬁvolve large relative motions which
further increase as c¢; is increased so that both modal damping ratios increaée and
eventually become positive (e.g. fof ¢;=0.009 wﬁen ¢ =-0.12). The system is then stable
and the steady étate ampliﬁlde is 0. Further increases in c; first lead to small increases of -
the relative motions of both, then of only one of the mode shape with the éther one
exhibiting a decrease. Notwithstanding the increase in ¢;, this reduction in relative
moﬁon of the mode shape is signiﬁ.cant enough to force a reduction of the cox;responding
modal damping which eventually Becomes négative (e.g. forc;= 0.018 when ¢ = -0.12).
"The equilibrium is then no loﬁgef stable. Further increases of c; lead to further
reductions of the relative motions of that mode which eventually converges to [1 1] as ¢;
becomes very large. That is, the motions associated with this unstable mode correspond
to the stuck configuration and the steady state response of the system is gove‘m‘ed by the

van der Pol restoring force on the stuck system, exactly as in the case p = 0.
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for different values of the damping constant ¢ and coefficient of friction x, noted as
c;u. k, =0.05, 5§ =0.025. The crossings between the corresponding x# =0 and

' 4 = 0.25 curves are circled in red.
A comparison of the curves of Fig. 2.20 and 2.25, see Fig. 2.26 for a few values

of ¢, is of particular interest. Most importantly, note that the curves corresponding to

#=0.25 and p =0 cross each other at a relatively low value of the damping coefficient

c; . For values of ¢; smaller than this threshold, the largest response of the steady state

~ motions of the system with friction is less than its frictionless counterpart. On the

contrary, for values of ¢; larger than the threshold, the frictionless system is the one
exhibiting the smallest response. In fact, in the interval ¢, €[0.009,0.018] (for

c 2—0.12), the frictionless system returns to equilibrium while the one with friction

maintains a fairly large amplitude limit cycle oscillation! In this case, friction may




sighiﬁéahtly iﬁcrease the LCO amplitude, albeit it is a purely dissipating meéhanism. The . .
“explanation of this surprising observétioh ‘resides in thé sticking potential of ffiction;’
Consider for example the response of the systeh with ¢ €[0.009,0.018] and ¢ > —0.12
to a smalla perturbation. As explained above, the frictionless system has a stable
equilibﬁum for these parameter values and fhus_ the perturbation decreases with time, |
returning té zero after an infinite time. The systefn with friction does not exhibit this
behavior. Spveciﬁcally, at the first occurrence of a zero relative velocity, the system
becomes stuck because the forces involved (inertia, dashpot ¢y, and spring k;) are too
small to maintain slip. Accordingly, there is no more dissipation and the response of the
primafy mass increases répidly under tﬁe action of the négative déshpot. Eventually, the
- response becomes large énough‘to force slipping and dissipation resumes in both»the
.dashpotv ¢, and the friction elenﬁent and convergence to a lirﬁit cycie takes place. If this

~ limit cycie is perturbed, fof example through a reduction of the responses of the two
masses, sticking will occur at the next occurrence of a zero relative velocity and the
motion will then grow back under the sole action of the aerodynamic effects (negative
dashpot). |

It is thus concluded that friction does not always lead to a decrease of the

amplitude of LCO.

24  Harmonic Balance
The harmonic balance method is an approximaté technique for the estimation of

the periodic steady state response of nonlinear systems. In this approach, the response is
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assumed in the forrh "of a limited Fourier series the unknown constaflts of which are
evaluated by matching as many cosn® ¢t and sinn@t components as possible in the -
equations of ‘motion. Note in the present context 6f self excifed vibraﬁdns that the
- fundamental frequency e is also unknown.

The harmonic Balarice method will‘ be used here to obtain an approximation of the *
»continuous slip reéponse of the system of Fig. 2.5. At the contrary of the exact
formulation, this development is not seriously affected by the value of % and thus was
carried out directly in the general case kl #0 and then particularize to k =0 for
comparison with the exact formulation and the numerical simulation results. It rrﬁght
seem at first that the displacements of the two masses should both be expressed as svine |
'rand cosine of all frequeﬁcies na)t} but it should be recognized that thé system of Fig. 2.5
is time invariant and thus that any specific timé can be considered as the temporal origin
+=0. 1t is particularly convenient here to select this point‘to match a maximum value of |
the relative displacefnént of the two masses. Under this condition, a singlé harmonic
approximation of the system response is

xy=A,coswt+B,sinwt and y=xy —x; =Y coswt. (2-35)

Next, it is required to obtain the corresponding representation of the nonlinear

- forces, i.e. the fofce of friction here. Given thé above form of the relative response, it is

directly found that a one term Fourier series is

UupN sgn(;'c) =~ i’L-ID—]Y-sin wt - (2-36)
o _
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The esﬁrﬁatién of the unknown parameters 4,, B,, Y, and @ is then achieved by . L
introducing Eq (2-35) and (2-36) in the equations of m<->tion
My e+ (k) w ~ gy = By and Myiy —kyty + ey ==Fy, (237)
where | |
Fy=mpNsgall-%). e

This process leads to a set of four nonlinear algebraic equations for the unknowns.

~ After some manipulations, it was found that

(O'—rpzl(l—pzXl—pz—rpz)+4§‘52p2]—0'rp2(1-p2—rpz)-:O (2-39)
' 2
B, =-_4_2M; 4 = (r+L)p ;‘1 upl (2-40)
- mpt k 25,rp° 7wk -
and
rpt L .
v=—-=1 4 : (2-41)
(c-—rpz) o
where
p=old); r=M,/M;and c=k/k | (2-42)

The solution of Eq. (2-39) is achieved first to yield the value of the frequency p. The

remaining parameters are then estimated from Eqs (2-40) and (2-41). When the stiffness

k, vanishes, the cubic characteristic equation (Eq. 2-39) is easily solved to yield

r+ 4¢3 i\/r+4{éz ~16£2(1+7)
a6 )eb s .

2
=1-
P 2 +7)

(2-43)
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A two-frequency harmonic balance approximation was also obtained by considering both =

wt and 3w¢? sine and cosine terms in both x, (t) and y(t). Thatis,
X =Alcosa)t;i—Blvsirla)t+A3cos3mt+B3sin3a)i (2-44)
and |
: .y=x2—x1=Clcovs‘a)t+D>1 sinwt + Cycos3wt + Dysinldwt. | (2-45)
Since the vtemporall origin =0 is selected to correspond to a peak of the relative response,
one rﬁust have $(0)=0 or _
3Dy + Dy =0. (2-46)
Further, the 2-hannoniq Fourier series Qf the friction force is easily shown to be
@ngn(fc) ~ ﬂlﬁ—Nsina)t + i‘—;P;’i’-sin 30t . an

~Then, introducing Eqs (2-44), (2-45), and (2-47) in the equations of motion, Eqs (2-37)
“and (2-38) and comparing terms in sinw?, cosw!?, sin3w¢ and cos3w? leads to the

following 8 equations

h-p2)a +2¢5 pBi -0y =0 (2-48)
—2¢p 4 +(1-p2)31 - D =-§- (2-49)
(-9p2) 43 +6¢5 pBy 0 C3=0 | (2-50)
-645pA3+(1-9p2)B3—aD =—§4; | (2-51)
—rp2 4 +(0'—rp2)C1 =0 (2-52)
~rp? B+ (0' - rp:")z)1 =4 | (2-53)

T
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~9rp? dy+lo-9r p?)C3 =0 o @say
.-9rp233+(a-9rp2)p3=3i @59
. 7T

: Equétions (2-46) and (2-48)-(2-55) repreéént a set of 9 equations for th’e‘ unknown
‘parameters of the response and the frequency p. The solution strategy proceeds as
follows. First, Eqgs (2-49); (2-51), (2-53), “and (2.55) are combined to produce 3
homogenous equations. and 1 non-homogenous one. The former equations form with Eqs
(2-46), (2-48), (2-50), (2-52) and (2-54) a set of 8 homogenous equations which are linear

in the 8 coefficients 4;, ..., D3 fora given value of p. To obtain a non-trivial solution, it

is thus re‘quired that p be chosen so that the determinant of the matrix of coefﬁcients‘of
these équations vanish. The nonlinear equation resulting from this condition is a
- polynomial Qf order 16 in p. For eacﬁ of its roots, f;h_e coefﬁciénts 4y, ..., Dy can then be
evaluated by: solving the system of linear gquations fonhed by iof the 8 homogenous
equations and thé non-homogenous one. |

The above procedures were followed to obtain 1- and 2-harmonic approximation
of the continuous §lip response of the system of Fig. 2.5 and their accuracy was assessed
by comparison with the numerical simulation and/or the exact formulation. The special
case k) =0 was considered first and the resﬁlts are presented in Fig. 2.4. Clearly, there
are two frequencies satisfying Eq. (2-43) (one for the + sign, the other for the - sign) and
thus the harmonic balancé solution yields two estimates of the continuous slip solution,
one of which (R) approximates the true response while the other is a fictitious solution

(F). It is seen from Fig. 2.4 that the accuracy of the harmonic balance (solution R) is not
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very good in the small domain of existence of these continuous slip solutions. Further, the .
inclusion of a second harmonic does not seem to improve substantially the accuracy of

the estimates of the amplitude and frequency of responée, see Fig. 2.4 in which (HBM)- |

- CS and (HBM2)-CS are the 1- and 2-harmonic approximations of the continuous slip

- solutions. .
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Fig. 2.27 Relative errors (in %) in the maximum response of mass M1 as predicted
by the harmonic balance method with 1 and 2 harmonics as functions of %, ,
M, =0.05, ¢ =-0.07 (Note the split horizontal axis).

The accuracy of the harmonic balance method was also assessed for a broad range
of k; #0 situations. Shown in Fig. 2.27 are typical relative errors on the maximum
response obtained in the SFCS domain by using the 1- and 2-harmonic approximations

and corresponding to a frequency close to the one obtained by numerical simulation.
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. Given these rgood qualitative results, the vharmonic balance method was also used to .
estimate the boundary of the stabilization domain, see the curves HBM1F and HBM2F on
: Fig. 26 It appeérs from all tﬁese results that fhe harmonic balance estimates were
' qualifatively correét in predicting the amplitude of the response and that the addition of a
second hafmonic provided an improvéd quantitatrivev matching with the simulation results.
The difference in accuracy of the harmonic balance method for 4; =0 and & # 0

may result ffém the natﬁrally harmonic character of the response of the sliding mass in

the latter case as opposed to the parabolic time histories obtained in the former case.




CHAPTER 3

DESIGN AND TESTING OF A FRICTION DEVICE

The second part of this thesis focuses on the deéign, fabrication, and testing of a
ﬁ'wtlon device similar to the dlsk-torsmnal spring system of Flg 1.2 which was later
~ tested in the Deutsches Zentrum fiir Luft und Raumfahrt (DLR) transonic wind tunnel.

* The results of Chapter 2 serve here as stepping stone for the parameter selection of the

device components.

3.1 Design and Fabrication
The _'mitial plan for the friction device was an installation inside the airfoil,
_ ‘consistently with Fig. 1.2, but this option led to some daunting challenges, e.g.
, fabrieatiﬁg a novel airfoil v(cost constraint), fabricating a novel airfoil with enough space
__'internally for the device, having access to.’ the device once the airfoil was finished, etc. In
this light, it was proposed by DLR to mount the device rigidly to the airfoil but outside of
the wind tunnel, i.e. on the balance rigs located on either side of the wind tunnel and
airfoil. The first bending natural frequency of the airfoil is known to exceed 100Hz while
the vibrations of the device were expected to take place near the flutter frequency, i.e.
around 30Hz. It was thus argued that the airfoil would appear rigid and thus that the 2-
dimensional character of the problerh would not be compromised by the friction
mechanism being lumped at the ends of the airfoil as opposed to being distributed along

the span.
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Even then, the design of the friction device was very substantially constrained in =
: regards to weight, size, and to a Smaller extenf cost. From the standpoint of validation of
the presént ﬁn‘ding's, it was desired to achieve an inertia ratio of at least 5% fof the effécts ,
of friction to be most noticeable but to mﬁintain the occurrence of the flutter/LCO in the
* transonic range, it was necessafy to limit this rétio to about 3%. The size limitations
~ originated from the need to maintain the balance rig in its present conﬁguration.
The lack of access to the‘balance rig, and thus to the friction devices, during the
’ Wind tunnel testing was the next important issue to be resolved. Indeed, to minimize the
.forces on the wind tunnel walls and to permit the use of porous walls, the central section
of .the wind tunnel, iﬁcluding the baiance rigs, is confined to a plenum which is
. depressurized, and thus ﬁot acceésible, during the operation of the wind tunnel. Furthef,
' fepressurization is possiblé when the wind tunnel is down but the repressurization/
depfessurization process requires about 1 hour, i.e. a significant pbrtion of the total
testing time available. For validation of the theofetical results, it was however desired to
‘proceed with a parametric study of the effécts of the disk properties (inertia /p and/ or
stiffness kp ) and friction force (V) on the response of the airfoil-device system. This
situation motivated the search for ways to vary the inertia/stiffness of the disk and the
friction force remotely. While no simple means for changing the inertia/ stiffness
‘remotely was devised, it was decided ‘to vary the friction force by regulating the normal
force through the compression of linear springs by a linear actuator.
While the use of linear actuators provided the remote variation capability desired,

it also incurred a large increase in dead weight incompatible with the tight limits of mass
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and inertia to maintain the LCO in the transonic range. The only solution found to this .
problem was the mourﬁing of the actuator system on the laboratory fixed frame of the
balance rig. The solution of the weight issue then triggered a new probleﬁl: the
transmission of the normal force and normal force only (no tangential force nor moment) '
- from thé laBoratory ﬁxed actuator system to the disk moving in the plane pérpendicular to
the force to bé applied. This last significant difﬁéulty was resolved primarily through the
use of the cage of a thrust ball bearing inserted between the disk and the actuator system.
The well lubficated balls of the bearing allowed’ the relative motion, transferrgd the
- normal force, and generated only a rrxinirﬁal side (tangential) force with good lubrication.
Finally, the offset of the normal forces on the actuator and the disk induced by the motion
of the latter would nofrnally generate a moment on the actuator sYstem (severely limited
by the manufacturer) and potentially (through any defofrnation) a non-uniformity of the
.pressure applied on the disk. Both of the potential issues were resolved by inserting a
spherical ball contact along the path of the force transmission in the actuator system. That
© s, the actuator system pushed on the ball which then in turn pushed on the thrust bearing
cage. The point contacts between the bali and the contacting shaft insured the
transmission of a normal force only.

The detailed design of the friction device aﬁd actuator system was then
undertaken, with regular interaction with DLR, within the software SolidWorks using an
accurate CAD/CAM model of the balance rig provided by DLR. The final detailed
model, shown in Fig. 3.1-3.3, can be summarized as follows. The torsional frictional

device is composed of a disk connected to the airfoil (outside of the wind tunnel section)
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through a torsional spring machined to a Speciﬁc stiffness. The disk is | sandwiched .
between tWo steel rings providing the friction. The normal force is provided by the
actuator system shown on the right in Fig. 3.3, i.e. generated by a linear actuator based on
a step motor. The motor pushes én three parailels springsvto generate a controllable force
the magriitude of which is monitored through a load cell ﬁlounted in series and a LVDT
' recordiﬂg the translation of the motor. The force is then transmitted from the load cell to
a small spherical ball, thereby preventing tﬁe transmission of anything else than a normal
force, and then to a “thrust washer”. This subsystem is composed of a disk and the cage
of a thrust bearing, the latter of which is squeezed between the thrust washer disk and the
ext‘errial fﬁction ring of the device. The bearing cage permits the transmission of the
normal force even with reiative motion of the two disks (thrust washer and friction disks).
- Note that the bearing cage was loosely held in place (preventing it frorﬁ falling) by three
springs connected to long arms themselves attached to the support of the actuator system.
The actuator permits the variation of the normal force while a change of the natural
frequency of the frictional device is allowed by the addition/removal of masses at the
periphery of the disk and through the switch of torsional springs (2 different stiffnesses
were available).
The fabrication of the various parts was performed by the two ASU machine

shops as well as an outside machine shop.
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Fig. 3.2 Complete view of the airfoil, friction device, and actuator system in the
balance rig in the DLR wind tunnel.
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Fig. 3.3 Complete view of the friction device and actuator system in ASU
vibrations laboratory.

3.2 Instrumentation

The instrumentation of the DLR wind tunnel permits the measurement of the

: o pressure at a series of locations on the wind tunnel walls, of the liﬁ and moment on the
| airfoil, of the plunging displacement and pitching angle, and of the displacements at
selected locations on the airfoil. Of primary importance for the pre.sent validation were

: vthe plunging displacement and pitching angle but also fhe relative ahgle of torsion &, This
measuremenf was obtained through the reading of the strain in the coils of the torsional
spring (from a strain gauge mounted directly on the thin coils). The calibration factor
between angle and strain wﬁs obtained experimentally for each spring. The procedure for
exciting and controlling the airfoil and other details on the experimental capabilities were

the same as those used in prior investigation of transonic LCO at DLR.

3.3  Testing in ASU Vibrations Laboratory

The primary purpose of the testing that took place in the ASU Vibrations

Laboratory was to validate the design and fabrication, i.e. to demonstrate that relative




60

nﬁotions of the disk with respect to its support could take place and that these motions .
could be controlled by the force acfuatof. In particular,'it was desired to assess the
capability of the device to exhibit stick, stick-slip, and continuous slip mbtions. To this
’ end, the device was moﬁﬁted on a bar of a design similar to the device support in the
wind tunnel. This bar was then attached to a frame, itself mounted on the Ling shaker of
" the ASU Vibrations Laboratory as to impart plunging. and mostly pitching of the bar. The
shaker was used to provide a harmonic excitation at or near 30Hz, i.e. similar to what
could be expected in the wind tunnel. The normal force applied was varied to assess the

capability of the device to exhibit the required motions.

The exact classification of the observed motions was not always very éasy
’ Because of the noise present in the measurement, about 10 microstrains. Nevertheless, it
is -believed that all three types of motioné were indeed noted. Stuck motions were
observed for low excitatibn levels from the shaker and large normal forces as expected
and are not discussed further here. Continﬁoﬁs slip responsés were initially noted at zefo

normal force, see Fig. 3.4, but also for nonzero forces, see Figs 3.5 and 3.6. Stick-slip -
motions were observed first, see Figs 3.7 and 3.8, with sticking taking place at the peak
displacements but an intermediate, asymmetrical sticking phase has alsb been
encountered, see Figs 3.9 and 3.10. It is unclear what created the asymmetry in the
response, two possible sources are the torsional-axial coupling of the spring and/or the

variations of the normal forcé (see the load cell time history on Figs 3.9 and 3.10) which
could have resulted from vibrations of the shaker. In regards to the former issue, note that

the spring wants to displace axially as it is twisted in a direction (compression or
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extension) that is dependent on the direction of torsion (clockn/ise or counterclockwise). o
If the force apnlied by the friction rings is not the same on the two sides, this axial-torsion
coupling Would induce a variation of the normal force that is related to the torsion angie

which might produce the asymmetrical behavior observed.
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Fig. 3.6 Continuous slip response with nonzero normal force at 30Hz excitation.
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34  Testing in the DLR‘Transonic Wind Tunnel

Albeit complex, the friction device/actuator system combination worked perfectly
as designed} and led, for the first time, to the generation and recording in the DLR wind
tunnel of transonic limit cycles with active internal friction at Mach numbers close to 0.6.

The first important observation to be drawn is that such experimental analyses are |
- possible and that internal relative motions can indeed be excited in LCO scenarios.

Some of the recorded LCO are shown in Fig. 3.11 and 3.12. Although only a
limited set of LCO records were obtained, some observations can neveftneless be made.
Consider for example the evolution of the time histories of the response (plunging,
- pitching, and torsion) as a function of the Mach number. While the plunging e.nd pitching

time hietories show a clean single frequency behavior’ seemingly independent of the
© Mach number, the relative torsion angie displays a much richer behavior. Indeed, for
M, =>0.598 and neglecting the high frequency noise, the time history of 9 appears at
first to be almost purely a single frequency solution. A closer inspection however
suggests that the rise of @ is steeper than its fall, especially near the peak. As the Mach
number is increased, this effect becomes more pronounced and a flattened peak is
obtained for M_>0.606, suggesting the possibility of a sticking phase. The lack of
symmetry of this flattening implies a full Fourier series, including even harmonics at the

contrary of the solutions obtained computationally so far.
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| | What about‘rthe effects of the ﬁonnal ‘force? Shown in Fig. 3.13(a) and (b) are the
‘time‘ histories of the three variables for é Mach number of 0.608 and a normal force of
SON, aé opposed to the 21N used in Fig. 3.11(f) and 3.12(f). A comparison of the time
histories of the 21N and 50N is given in Fig. 3.13(b) from which it is concluded that the
increase in norrnai force has led to a decrease of the torsional response and,
correspondingly,‘ to a small increase in the plunging and pitching amplitudes. The small
changes that are involved in Fig. 3.13(b) ought to be confirmed as genuine and not the
result _of noise or variability. To this end, several caseé were repeated to provide a
baseline for the assessment of the noise and variability. In fact, a repéat measurement of

the LCO for M, =0.608 and a 50N normal force is available and the two sets of time

histories are plotted in Fig. 3.13(c). It is clear from this figure that the repeatability is
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high so .that small differenées, such as thos¢ noted in Fig. 3.13(b) can indeed be
interpréted as genuine changés in the reéponse.

; : In closing fhis chapter, it should be noted that thé ﬂuttef speed of the system inv
As‘tuclic mode wés found to be highér than M_=0.608 in an earlier set of tests. In fact, it
- was ﬁecessary to excite the airfoil by a shaker durmg ‘tﬁe testé to obtain the LCO
measurements of Figs 3.11-3.13. It is thus concluded from these two observations that the

results presented are of a subcritical nature.




CﬁAPT ER 4
CONCLUSIONS
The focus of this fhesis has.been on the assessment of the effects of internal-
friction on the response of aeroelastic systems exhibiting either expiosive flutter or limit
cycle oscillation}s. In the first part of this work, a two-degree-of—freedom system has been |
extensivély sfgdied that xﬁodels a wing with an internal, sliding component. The largest

mass of the system represents the wing while the smallest one is associated with the

‘sliding component. A dashpot of negative constant was introduced to model the unstable

 linear aerodynamic effects, while an additional van der Pol restoring force was included

to characterize possible stable nonlinear aerodynamié effects. Both of these components
were assumed to act only on the largest mass (wing). The sliding mass was finally

assumed to be connected to the wing through a friction slider, a spring (k; 20), and

~possibly a dashpot (positive viscous damping, ¢; 2 0).

The system was ‘analyzed first without a van der Pol term. Fﬁrther, in the absence“
of elastic deformatioﬁ during sliding, ie. for 4 =0, it wés shown that an exact
procedure éan be followed to transform the nonlinear equations of motion into a set of
nonlinear algebraic equations and that a stabilization of the unstable aerodynamic forces
was possible. The most negative damping that could be stabilized in this conﬁguration
was in fact shown to be 27/ n? (for r<< 1) where r denotes the ratio of the two masses
of the system. The system was found to exhibit periodic motions with possible stick
phases. The introduction of a nonzero spring constant was shown to lead to an increased
stabilization potential that is maximum in a “tuned damper” configuration, i.e. when the

natural frequency of the primary component (the wing alone) closely matches the natural |
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frequency of the secondafy alone (sliding mass on spring k). In addition to this benefit,

- a broader set of motions was also observed. Besides periodic (referred to as single
frequency here) solutions, multiple frequency motions were ‘also found to exist,
‘especially near the tuned damper conﬁguration while the siﬁgle frequency solutions were
“typically obtained near the stability border. Both continuous slip and stick slip multiple
frequency motions‘were noted which were shown to be either aperiodic or chaotic.
Further, the transition from single to multiple frequency was shown to be a Hopf
bifurcation. It was finally observed that the maximum steady state response of the wing is |
.typically minimum for the single frequency motions occurring just next to the )
Eifurcation. A sharp increase in response levél is obtained after bifurcation that results
from the beatihg induced by the presence of multiple frequencies.

The inclusion of a van der Pol term did not signiﬁcéntly éhange the above
findings witil the noted exception that the system is always stable even in the absence of
| friction in which casé it experiences a continuous slip singlé frequency motion. In fact, it
was observed that the van der Pol term leads tb a significant reduction of the large
amplitude beating excursions obtained otherwise in connection with multiple frequency
solutions and appears to postpone the Hopf bifurcation. In regards to stick slip vs.
continuous slip, the decrease in response implied by the presence of the van der Pol term
was found to increase the likelihood of stick slip motions which typically occur at lower
response levels than continuous vslip solutions do. The effects of the coefficients of
friction (the static and dynamic coefficients were assumed equal here) was studied next.

It was first noted that the amplitude of continuous slip motions (single or multiple
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frequency) is linearly scaled by the coefficient of friction and this parameter‘plays no
further role in these cases. When stick phases occur, a more complex dependency on the

coefﬁ“cient of friction is obtained. Next, it was found that 2 stable solutions can‘be
obtained for low coefficients of friction. One such solution has a low amplitude and is
dOminafed by friction effects alone with little influence of the van der Pol term. The
- reverse statement holds for the other solution, the amplitude is large with the stabilization
dictated by the van der Pbl force with little effect of friction. As the coefficient of friction
7 increases, these two solutions become closer together énd eventually merge. The
amplitude of response then appeérs to increase monotonically with further increases of
- the coefficient of friction. The effects of a secdnd, viscous damper in parallel to the
friction eiement was finally considered. It was found that the two ‘damping mechanisms
do not necessarily reinforce each other and that the friction hinders the viscous
dissipation wheﬁ stick occurs. In fact, nonzero amplitude limit cycle oscillations were
noted‘with friction in situations where the equilibrium (zero response) would in fact be
stable without friction.v
The second part of the thesis focused on the design, fabrication, and testing of an
actual friction device on an airfoil. The basic design of the system is a rotating disk
connected to the airfoil by a torsional spring of natural frequency closely matching that of
the airfoil to achieve the tuned damper arrangement discussed above. The spring was
instrumented with strain gauges to measure the angle of torsion of the system. Finally, a
complex system was designed to produce the required normal force to induce friction on

the moving airfoil without transmitting any shear or moment. The preliminary testing of
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the‘ system was accomplished in shaker teéts conducted in the ASU Vibrations o
Laboratory. The systém was shown to exhibit the basic motions expected, i.e. continuous
| slip and stick slip responses. The friction device was then installed on d NLR 7301 airfoil
| in the DLR transonic wind tunnel. operating at 2 Mach ﬂumber near 0.6. Subcritical limit
cycle oscillations were observed in which the friction played a sigrﬁﬁcant role. The
- limited data obtained demonstrates a slight decrease in response by increasing the normal

force applied, i.e. by increasing the level of friction.
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- ABSTRACT

The appearance of limit cycle oécillations in aeroélastic systems has usually
been associated With nonlinearity in the aerodynamics and/or in the structural restoring =
forces. It has, however, been recently suggested }that nonlinearity in the damping
) mechanrism, mofe notably friction befween a small moving part (or many such parts such
as stores and missiles) an‘d the wing, may indeed be a source of post-flutter limit cycle‘
> oscillations. The present work provides>a numerical validation of this expectation by
~ studying the response at and above flutter of a flat plate and a NACA0012 airfoil béth

exhibiting an internal friction méchanisni and placed in a inviscid and incompréssible
flow.
The aerodynamic Qf the flat plate, dictated by the Theodorsen function, is linear
* and thus the frictionless System is either stable or flutters. Time marching computations
were carried out with a rational approximation of the Theodorsen function on the system
with an internal friction component. These results demonstrate the existencé of a rich
- collection of limit cycle oscillations in a rahge of flow speeds extending above the flutter
speed of the flat plaie with its fricﬁbnal device stuck by about 3% for a device whose
inertia is 5% of the inertia of the flat plate. This significant increasé in stability zone
demonstrates the good potential stabilization of friction.

The second airfoil, a NACAO0012 section also placed in an inviscid,
‘incompressible flow, had been found in earlier studies to exhiBit limit cycle oscillations at |
and slightly above its flutter speed. The inclusion of a friction device is once again seen
to be beneficial as significant reductions of the amplitude of the limit cycles (e.g. by a

factor of 3) can be obtained by appropriately “tuning” the friction device.

it




The nature, i.e. periodic, aperiodic, chaotic and continuous vs. stick slip, and

~ magnitude of all limit cycle oscillations encountered are discussed in details.
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CHAPTER 1

INTRODUCTION

’Lixﬁit Cycle Oscillations (LCO) have been a prevalent aeroelastic problem on
several current ﬁghter- aircraft. This pheriomenon usually occurs for aircraft with external
*stores throﬁghout, but not limited to, the transonic flight regime'?, although a business jet
‘wing LCO Was also reported recently’. Complicated by the problem geometry, e.g. the
| aircraft—store system, thé LCO meqhanisms still remain to be fully understood. In fact,
':there 'exivst few analyﬁcal techniques available for LCO prediction a‘nd"an 'ix.nsufﬁ‘cient
) understanding of its physics. |
| : Witﬁ aerodynamic feedBack, LCO are v‘sustained periodic oscillations which
neither increase ﬁor decrease in amplifude over time for a given flight condition. A series
of researchers, notably Cunningham and Meijer®, believe. that the wing/store LCO is a
purely aerodynamics phendmenon, largely duve to transonic shock oscillation and shock
induced flow separation. This LCO scenario, which is referred to as the Transonic
| Shock/Separation (TSS) model, has been suggested by Edwards to be, with viscous
,veffects, one of the major factors contributing to transonic LCO for wings’.
In 1998, Chen, Sarhaddi and Liu? otféred a radically different LCO model based
on the observation that wing/store LCO éan be a post-flutter phenomenon whenever the

flutter mode contains low unstable damping. This type of flutter mode is called a “hump




- mode”. Since the aircraft structure usually exhibits some structural nonlinearity, such as

frict'ion,b free-play, etc., the moderate growth of am‘plitudevs'corresponding'to the low -

negative aerodynamic damping may be suppressed. The result is then a steady state

~ oscillation. The consideration of friction in wing/wing-store LCO studies is rather

recent’. Here it is referred to as the nonlinear structural damping (NSD) model of the

'wing/sfore LCO.

It should be noted that the consideration of friction in flutter analyses is not new,

asitis recognized in the turbomachinery community that the friction at the blade root and

in shrouds plays a definite stabilizing role. In fact, this observation has led to the use of

specially designed friction-based damping systems, referred to as “underplatfon_n”’

dampers, to damp bvlade vibrations and increase the flutter speed (e.g. see Ref. 6 and 7).

Notwithstanding  these similarities, there are substantial differences in the

aerodynarhic/structure interactions in wing/wing-store LCO and in the turbomachinery

blade flutter that render each problem specific.

-In light of the above discussion the focus of the present investigation and of a
companion one, Ref. 8, is on providing a validation of the potential of friction to stabilize
an unstable aerodynamics and/or affect the magnitude of existing limit cycle oscillation.

The purely structural dynamic set up of Fig. 1.1 was a adopted in Ref. 8 as a
simple model of an aeroelastic system near/above flutter; the damping coefficient ¢ was
taken negative to simulate small amplitude unstable aerodynamic effects and a van der

Pol restoring force could be included to represent a potential stabilization of aerodynamic




origih. In this fashion, the effects of friétioﬁ céuld be assesééd on purely fluttering
systerﬁs (without the van der Pol tefm) and those exhibiﬁrig aero-driven lhnit cycles (with :
vah def Pol term). In fact, a comprehensive quantitative aﬁalysis of this system was
achieved, .most notably the stabilization potential of fn'étion was substantiated, and the

effects of the various parameters clearly described.

y ' -
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Fig. 1.1 2-degree-of-freedom system with van der Pol (if.d.p) force

The seéond part of Réf. 8 descﬁbed the design of an actual fn’ﬁtion device and
reported the fesulté of wind tunnel tests conductéd in fhe DLR transonic wind tunnel.
Sorﬁe of the finding of this experimental effort confirmed the analysis conducted on the
system of Fig. 1.1 while others were unexpected.

In this light, the specific goal of the present investigation is to parallel the analysis
of Ref. 8, but on actual aeroelastic systems as opposed to the structural dynamic model of
Fig 1.1, and thus to bridge the two components of this earlier study.

In selecting an appropriate structural modet for a full aeroelastic analysis, it is first
necessary to describe in details how friction will be introduced. The representation of the

friction effects is particularly challenging as it is expected that many joints (e.g. between




wing and pylons, between riveted panels, between boltéd pieces of spars, ribs, etc.) would
likely pérticipate in the damping ‘effects. However, the modeling of these different

contacts would not only be a tremendous task but its complexity would render it

| extremely difficult to determine the role of friction in LCO. To obtain such results, it is

suggested to proceed vwith the following structural simplifications and the aerodynamic
modeling that followsi

@) The friction effecté will be assumed to ori‘gin‘ate vfrom a single, rigid
component moving relati‘vely with‘respect to the_ wing and to be characterized by a

preload N or applied moment M| and coefficients of friction ‘,us and 4.

(i)  The changes of structural geometry that occur due to the relative sliding at

~ the joints will be neglected. This assumption appears justified as all aircraft components

- are subjeéted toa 1arge preload so that a large amount of ehergy can be dissipated with

only small relative motions at the joints. Accordingly, fhére will be no effect of the
sliding §n the aerod&namics.

Combining thé above two assumptions suggests that the friction mechanism
should éppear internal to the wing, e.g. modeled through a block sliding inside the
structure in a rough track (Fig. 1.2) or through a rigid component experiencing rubbing
while rotating, e.g. as a rotating disk squeezed between two stationary rings (Fig. 1.3 and

Fig. 1.4).
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Fig. 1.4 Exploded view of the torsional friction device®




Both of these models v‘villlbe ﬁsed in the ensuing chapters to assess the role.of
friction on éeroelastic systems exhibiting either ‘a pure fluttering behavior (chapter 2) or
" post ﬂutter limit éycle osciilations (chapfer 3). In both cases, an inviscid incompressible
A Vaerodynamicl:s is aséumed and fully coupled aerodynamic/structural dynamic |
.computations are performed. |

" It should be noted that these models are meant to be generi;', i.e. that their
equations of motion may Be considered representative, albéit possibly simplified, of the
equations of mofion of a physical wing/wing-store system expressed in modgl
coordinates as opposed to the physical coofdinates used here. A one to one

correspondence between the properties (mass or inertia, stiffness, ....) of the friction

device and of a physical component (store or missile for example) is not suggested here.




CHAPTER 2

FLAT PLATE WITH INTERNAL FRICTION -

As a first stepvforward understanding ';he effect of friction on aeroelastic system,
the simplest airfc;il, i.e. a flat plate, will be considered that sﬁpports a torsional friction
deviée, see Fig. 1.3 and 1.4. The systém is thus characterizéd by the three degrees of
freédom:- plunging, A, (positive downward measured af the elastic axis), pitching about
~ the elastic axis, a, (positive nose-up) and torsion & (positive cloék—wise). _

Meanb
~ position

S DR ____ .Y .
NS 1o
/ mI
Elastic ky
: AXiS | | :
- : 2zl E&b': :
| b L b |

- Fig. 2.1 Flat Plate airfoil having three degrees of freedom

The equations of motion for the above system are

Mi+SG+kh=-L() @-1)




S‘,ii+1aaz+kaa}k‘,(a-0)=Ma'(t)+M[ S @

| 1§ +vkd(9-a)=—Mf v | | (23

| vs.f‘lﬂlere‘M is the total rﬁéss of thé systém, S, is ‘the. staﬁc moment of the flat plate about
elastic axis, /, is the moment of inertia of the ﬁat-plate about élastic 'axis ‘and I ,is the

moment of inertia of the torsional disk. The symbols %,, k, and k‘; denote the spring

constants of the plunging, pitching, and torsional motions, respectively. Further, U is the

free stream velocity and b is the half chord. In regards to forces, L and M, denote the lift -
~ (positive downward) and moment (positive nose-up) respectively, and M, is the friction

moment resulting from the squeezing of the rotating disk by the two rings, see Fig 1.4.

: This moment can be expresséd as
M,=#D M, sgn(6-c) during slip (6% &) o o (24aj -'
and | M| < pg M, during stick (6=¢) | | ‘ | (2-4b)
where HpM, is the moment created by the friction induced shear stresses. If one assumes

a uniform stress distribution at the disk ring contact, then it is found that

[—R;—-R—izj where N is the normal force between the disk and the ring and R,

and Re' are the internal and external radii of the rings. Finally, u;, and p; are the

dynamic and static coefficients of friction, respectively.‘

Introducing the dimensionless time 7 =U?/b in Eq. (2-1), (2-2) and (2-3) yields




UZ UZ

MK +S,—ra hh=-L) | (@)
U? U? | |

Sa_~b—2h"+1a?a”+kaa+kd(a—9)=Ma(z')+Mf | » : (2-6)

1,77 6"+k,(6-a)=-M, | , 2-7)

where ()’ denotes the differentiation with respectto 7.

It will be aSsuméd here that the aerodynamics can bve assumed as inviscid and
incompressible. The resulting aeroelastic system is then linear in the absence of friction
and its correspond_ing response can be sought by standard Fourief transfgr function
concepts. Specifically, expressing the airfoil rhotioris as

h(z) = hye™ R | | | (2-8a)
L - _

a(f)=a ™ | | | (2-8b)
where the reduced frequency £ is defined as |

wb
k=— 2-9
7 | (2-9)

then, it can be shown that the lift and moment may be expressed as .-

L()e™

: . : .
b U = -kz(h" a,a,)+ika, + 2C(k)‘:050 +—ll-)-khu + (E—a,,)zkao} (2-10)

e
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. p7(: b)zUz._ =(+ a,,)ZC(k)[ao kb + (E—ah)zkao] |
2 hO ' 1 ,. k2 - 7 . )
Ko, (GL-am)-(C-a)ikey @ (2-11)

"In the above équations, C(k) denotes the Theodorsen function®'® simulating the
* unsteadiness of the wake and expressed as

_ H fz"(k) __ K (k)
T HP(k)+iHP (k) K, (ik)+ K, (ik)

C(k) (2-12)

where H?()and K,()) denote the Hankel function of the second kind and modified

Bessel function both of order j, respvectively.

Adopting é rational approximation of this function permits the reformulation of
Eq (2‘-10) and (2-1‘ 1) in terms of ordinary differential.equations‘ which can be marched in
‘time with Eq.‘ (2-5), (2-6) and (2-7) td obtain the résponse of the coupled aeroelastic
system both without (linear analysis) or with (nonlinear analysis) friction. Specifically,

the following approximation of C(k) is used in the ensuing ana‘lysis“”10

C(k)=1_-5l_ik_.§i (2-13)
ik+s, ik+s,

where £ =0.165, s, =0.0455, £,=0.335, and 5,=0.3.
A comparison of the real and imaginary parts of the Theodorsen function, Eq. (2-

12), and its rational épproximation, Eq. (2-13), is shown inF ig 2.2. Clearly, the matching

is very good so that Eq. (2-13) is appropriate for the present inve‘stigation.
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Fig. 2.2 Comparison of the exact Theodorsen function, Eq. (2-12), with its

rational approximation, Eq. (2-13) '

2.1 Time Marching Computation

~ The approximation of the Theodorsen function by a rational expression is only the

first step in rewriting Eq. (2-10) and (2-11) in terms of 4(z), a(r) and their derivatives.

Indeed, note that C(k) does not appear alone in Eq. (2-10) and (2-11) but rather through

the products C(k)X, where X, denotes either A, or ¢, and that there variables are,

from Eq. (2-5), the Fourier transform of A(z) and «(7), i.e.

by =hy(k) = F{h(n)} ; @, = a,(k) = F{a(r)}

(2-14)

Since there are three térms on the right-hand-side of Eq. (2-13), one can write

Ck)Xy=F{T(2) + T,y (£) + T, (7))}

(2-15)
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where T.(r) arise from the one in Eq. (2-13) while T,,,(7) and T,,(7) are associated
with the two rational terms in this equation. The application of standard rules of Fourier

transformations demonstrates that

T=Xx) | PR (2-162)
Tw ¢ Ty +s1 Tu=-6X B _ (2-16b)
T2 T.+z +5,T, _"sz' ' . - (2-16c) -

There are thus four auxiliary functmns of time, 7;(r) and T, (r) obtamed for i=0
- and X (r) h(r) and T, (z') and T, (‘L’) correspondmg to =2 and X(7)=a(7).

- Other noteworthy Fourier transform properties are

RCRX,=F{T+TL+T.) | o _(2-17a)
v'ikXov‘=F{X’} o - . | (2-17b)

and
FX,=F{-X"} o B o . (2-17¢)

- Combining Eq. (2-5), (2-6), (2-7), and (2-15) finally yiélds the equations of motion in the

form

(pj::;‘.’u +—;-Jh"+(pf:b3 —a"Ja”="a'—2(a+T3+7})—72)-(h'+7';'+T2')

k,

~(1-2a, X' +T;+T;
(1-2a,) W b U

no o (2-18)
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—"'—‘—'Sa ‘ | " _...1” b " » ' , y r. ’ ' :
_ (pﬁb3 —a;,)h +(pﬂb3 +bat +§)a =b(1+2a,)a+T,+T)+(1+2a,)H +T'+T;)

+b(% - 24: )(q' +T+T)- b(—é— - a,;)a' - p:;&z a - pnIZIUZ (a- 6’5 + M;fUz
(2-19)
and
R ; |
L= 4k (0-a) =-M, (2-20)

which must be solved together with Eq. (2-16). Note during stick phases that & and
are not independent variables since 6 =¢ . Eqﬁation (2-20) then permits the evaluation of
M,

The ensuing numerical study was conducted at various speeds U and for different

spring stiffnesses k, . The other system i)arameter values are shown in Table 2.1.
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parameter Explanation Value
M Total mass of the airfoil system 20.0 kg/m
- Static moment of airfoil about the :
S . 2kg
elastic axis :
Moment of inertia of airfoil about
1 1.1875 kgm
the elastic axis
1, Moment of inertia of torsional disk 0.0625 kgm
Spring constant of plunging
k, o 1.8N / m?
direction
Sprin constant  of itchin
k, prmg P s 1.25N
: direction
b Semichord 0.5m
Nondimensional distance from the o1
a : -0.
S midchord to the elastic axis
Hs (#) Static coefficient of friction 0.001
Hp (*) Dynamic coefficient of friction 0.001
p Density of air 1.27324kg /| m’
M, Moment term in Eq. (2.4) 1

Table 2.1 System parameter values for the flat plate
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2.2 Linear solutions : continhous sticking and frictionless slipping behaviors
Equation (2-16) and (2-18) through (2-20) represent three first order (two during

sticking since 6 and « are then related variables) and four first order equation. These

‘equations can be rewritten as a set of 10 first order equation in slipping motions and 8

such equations in sticking phases. These equations are in general nonlinear but there are

two linear limiting cases. If the motions are such that sticking occurs continuously (for

- example in the limits u — 0 or k; — ), the friction nonlinearity is not triggered and

the equations of motion are linear. This sticking solution will serve as the baseline in the

~ ensuing analysis as it corresponds to the system without moving parts. v

The second linear solution coi’responds to the continuous slipping motions

- occurring with g = ,uL; = p; =0. In this case indeed, the nonlinear moment M ; always

vanishes.
The complexity of the solutions with active friction warrants the detailed analysis
of all simple cases first. In this regard, note that the equations of motion for both of the

above linear problems (continuous sticking and frictionless slipping) can be rewritten as

y+4y=0 ’ (2-21)
where the vector y has the 10 components 4, h,a,a,b,0, 1., T,, T, and T, for the

frictionless slipping problem and only the 8 components 4, %, «, ¢, T}, T,, T, and T,

for the continuous sticking solution. Since Eq. (2-21) is linear, no LCO is possible : the

response y(t) either converges to O or diverges independently of the initial conditions.
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The convergence (stability) or divergénce (instability) of y(#) is 4determined by the
‘, eigenvélixes ./1 ; of the matrix 4. Specifically, |

the system isv‘stal.)yle, ie. Z(t) co:nverges to VQV iff the real partsrof ailllreigenvavlue‘s
A are >0, | |

the system is unsfable, ie. y(¢) diverges iff the real parts of any eigenvalue 4, is
<0.

It is convenient to analyze the response of the two linear cases in terms of natural

frequencies and damping ratios. This is achieved by associating to each eigenvalue 4, a

natﬁral frequency ; and a damping ratio ¢, through the linear single-degree-of-freedom

relation

Am-wg,tio il o 22)
or | | |

o =4 , . (2-23)
and |

‘- lel,) | | . (2-24) |

Stability then occurs when all ¢, are positive and instability when any of them is

negative.
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This stability analysis rgvealed some interesting information, most notably that
'the'éystem in frictionless slipping mode with the parameter values in Table 2.1 is less
' stable thap its continuoﬁs sticking counterpart in that it exhibité its first negﬁtive damping
) rgtio at a 1bwer flow .speed. For example, the first negative damping rétio arises at
approximately U=0.74 m/s (continuous slip) and U=0.995 m/s (continuous stick) for k,=
| 0.0165 Nm/rad but they bccur at U=0.99208 nmy/s (continuous slip) and U=0.99232m/s

(continuous stick) for k,= 0.985 Nm/rad. It must, however, be recognized that there are

several significant differences in the evolution of the dimensionless natural frequencies

(made dimensionless by the time Zb/—) and damping ratios corresponding to these two

values of &, . For the larger one, see Fig. 2.3, classical flutter situations are encountered,

two modes of each aeroelastic system (stuck and slipping) appear to cross as the smallest
damping ratio becomes negative. Further, note that the natural frequencies and damping

ratios of the sticking and slipping systems are very close to each other over the entire

range of flow speeds.
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Fxg 2.3 Dimensionless natural freqilencies and damping ratios of the
frictionless slipping (“s1”) and continuous sticking (“st”) Systems as functions of the

flow speed, £, =0.985Nm/rad.

For the smaller value of %,, the natural frequency of the torsional device alone is
the middle frequency (as opposed to the largest one in Fig. 2.3) and its presence affects
much more‘ significantly the response of the frictionless slipping system. This system
becomes first unstable at a flow speed of approximately 0.74m/s but this does not occur
with a mode veering/crossing, see Fig. 2.4. In fact, such a situation does not take place

until the speed reaches 0.995m/s. Classical flutter instabilities do take place for both the
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continuous sticking and frictionless slipping systems around U = lmy/s, see Fig. 2.5, with

~ the sticking system instability speed lower than its slippihg counterpart.
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Fig. 2.4 Dimensionless natural frequencies and damping ratios as functions

of the flow speed, k,=0.0165 Nm/rad.

The above comments demonstrate that there is, for both torsional spring
stiffnesses, a range of flow speeds for which the contmuously sticking system is stable
while the one in frictionless slip mode is unstable. Thus, if a disturbance is applied that
does not induce a relativeb motion of the disk with respect to the plate, the response of the
system will decay. On the contrary, a disturbancé that includes such ;1 relative motion
may increase unless the system gets stuck again. These observations imply that the

system of Fig. 2.1 might exhibit subcritical, as well as 'supercriticai, limit cycle

oscillations.
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A tentative explanation of the lower flow speed at which instability takes place
for the frictionless slippiné system as compared to its céntinuously sticking counterpart is
as follows. Note first that »thevstuck conﬁguration (two degree of freedom) can Be viewed
as the limit of the slipping one (thrée degree of freedom) in which the connecting

stiffness of the device k, ~». Accordingly, the two natural frequeﬁcies of the stuck

conﬁgufafion will be highler‘ than the two lbwest natural frequencies of the slipping
sysfem. Since the slipping is directly coupled to the pitching dominated motions not to
their plunging counterparts, it_ is expected that the above effect would be more significant
vion the pitching frequency ’than on the plunging one and the former would thus be
decreased by allowing relative motion of the disk.
How does this change in natural frequency affect the flutter speed? If one relies
_on the veering of the natural frequencies at flutter, it is predicted thét the highest natural
frequency of the coupled aerodynamic-structural system decreases while the lowest one
increases as the flow speed is increased toward the flutter point. For the system analyzed,
the pitching frequency is the highest at zero flow speed and thus a decrease of it, through
allowing siipping, may result in a lowering of the flutter speed. This explanation is

particularly consistent with the behavior observed for k,= 0.985 Nm/rad.

The above discussion ‘is the characterization of the system behavior in linear
frictionless slipping and continuous sticking phases and provides the background for the

analysis of the effects of the nonlinear friction force to be accomplished next.




23

23 N ohlinéar Responses

An important aspect of the nﬁinericél integfatidn of the govverninvg equafion is the
accurate capturing of the times atv which a zefo relative si;eed; §-c =0, is achieved. It is
indeed at those moments that the force of ﬁction abrupt_ly chahges sign (in the case of

continuously slipping motions) but also that slip to stick transition could occur. The

. appropriate determination of the stick to slip transitions is also important.

An interpolation by cubic and linear polynomials which was adopted in the

ensuing computations is presented next.

2.3.1 Transition Handling

If a transition was found to take place during a time step (i.e. a charige of sign of

- the relative velocity or the friction force exceeding the sticking threshold), the time

| A e[t,.,tm] at which it occurred was estimated by interpolation of the relative velocity

(using a cubic polynomial) or the friction moment (linear interpolation).
When a transition (slip to slip, slip to stick, stick to slip) occurs during the time

step te[t,.,t,.ﬂ], the estimate of the response cannot be obtained directly from a shooting

of the solution at 7 =1, because the friction force definition and the equations of motion

would only be valid before the transition takes place. The neglect of the change of

character during the time step would produce an error O(A¢) and thus would force the

selection of a very small time step A¢. To avoid this situation, it is proposed here to first

march the solution through the entire time step as if no transition took place, then to
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estimate the transition point ( time ¢, ) within the time step, and finally to recompute the
response at the end of the time step assuming the correct state in the interval [¢,,2,, ].

" Consider first slip to ‘slip or sliﬁ to stick fransitions. The transition condition, i.e-;
‘the vanishing of the relative velocity, is Basbed on the response variables which are
continuously differentiable. Thus, the rélative displacement, x(t), can be approximated by
a cubic polynorﬁial of time in the interval {¢,,2,,, 1, i.e.,_ |

x(t)=x, +af +bt* +cf> | ‘ (2-25)

“and |
x(t)=a42b7+3ct“2 o S | o - (2-26)
~ where t_=t‘—t,. and X, =x().
The constants a, b, and ¢ aré' evalu#ted from the values of the relative

displacements and velocities at the beginning and end of the time step assuming that no

transition takes place. Specifically, when /=0 and = At

X(t,,) = X, = X, + aAt + bAL + cAP | (2-27a)
i(t)=v,=a . ' (2-27b)
x(t,,,) =V =a+2bAt+3cAt? : (2-27¢)

Equation (2-27b) yields the value of a, while Eq. (2-27a) and (2-27c) lead to the

values of the remaining coefficients as

p==F8 | | - (2-28a)
At | |
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‘ . - ' : . - (2-28b
- _where f=v,~v, and

X =X,

—-a=y ' o B . 2-28
Y a }" o C . | (2-28c)

On the basis of the cubic interpolation, it is possible to estimate the transition

time. Speciﬁéally, from

X(t,) =V, +2bT, +3ct? =0 : (2-29a)
it is found that _ :
R N P S
7= ———Tic  (2-29b)
C

Stick to slip transitions are governed by the value of the force of friction of which
only the value is known (no derivative). It will thus be assumed that the forée of friction

is linear during the interval or

(F-F)

Fehr g - o (2:30)

where Fjand F, are the values of the force of friction at the beginning and end of the

time step assuming that no transition took place. The transition occurs when F reaches its

threshold value of ;N so that

_li.us'N'_F;I
|F, - F|

5=

A | - ' (2.31)
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'Once tile transitioﬁ time vhas been estimated from’Eq. (2-29) or (2-31), cubic |
interpolations of h(i), q(t) and 4(¢) are cai‘ried out and ¢vahiafed at the appropriate ¢,
- to yiéld approximate valuesr of the respohse at the transition.
The structural cbmputations ére then repeated in the intérval te[to,tm]. with the

© correct state (stick or slip).

- 2.3.2 Time Marchinngumer-ical‘ Result
Based on the analysis of Agelastoss, it was of particular interest to determine thé '
type‘ of respdnse (single vs. multiple frequency, continuous slip vs. stick slip vs.
continuous stick) and the largést steady state respbnses, both as functions ovf. the fwo
‘ fundamental parameters: the ﬂéw speed U which dictates the level of instability in the

systém and the spring stiffness k, which controls the transfer of energy from the plate to

the friction device. The behavior above both continuous sticking and frictionless slipping
flutter speeds was investigated first, and Fig. 2.5 through 2.8 show some typical examples
of observed responses.

The simplest motions are characterized by a single frequency (SF) and continuous
slip (CS), or SFCS for short. The term single frequéncy (see Ref. 8) refers here to a
solution that exhibits a single fundamental harmonic, these motions are thus periodic as
can be seen from the phase plane plot of Fig 2.5v(d) and its sampled version of Fig. 2.5(¢).
Single dots in this latter figure indicate that the crossing of the zero relative velocity

always occurs in the same conditions. Stick slip periodic solutions are also possible and
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.are de‘notedvz‘is SFSS (single frequeﬁcy stick slip), see Fig. 2.6. The presence of the stick
- phases is best seen in fhe plots of the pitchihg and torsion velocities, ‘sée_ Fig. 2.6(c); they |
| cprresporid to the intérizéls duriné which these two velocitieé are equal. |
Muitiple frequency solutions are those‘that involve at least 'va0 frequenciés which
-are not rational with respect bto_ each other. The résulting motions are thus non-periodic
rand exhibit a beating as seen in Fig 2.7 (cohtinuoﬁs slip) and 2.8 (stick slip). As might be
‘ expected, the phasé plane plots of these multiplé frequency (non-periodic) motions are
‘ rﬁuch more complex than those of the periodic solutions. In fact, the MFSS solution of
Fig 2.8 appeafs frorﬁ Fig. 2.8(e) to be apen'édic which its MfCS counterpart would seerf; _
to be ‘chaotic, see F ig. 2.7(e). | |
A global overview of the response of the. system can be obtained by analyzing the
_ two most essential featufes of the motions, i.e. the type of solution (MFSS, MFCS, SFCS,
SFSS) and the magnitude of the response, as functions of the two critical parametefs U

and k, . The concept of magnitude is not clearly defined for multiple frequency solutions,

the largest noted response in the computed stéady state domain will be used instead. This
value is referred to as the largest response and reduces to the amplitude of response for
periodic motions. The characteristics of the response and its largest value are shown vs.
Uand k, in Fig. 2.9(a) and 2.9(b).

There figures exhiBit many of the features presented in Ref. 8 Indeed, it is seen

that the largest speed at which a stable solution exists is obtained for an intermediate

value of the spring stiffness &, (around 0.0165 Nm/rad), that a transition from single to
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multiple freqﬁency solutions occurs at a ﬁxed speed aS | the spring stiffness k, is
increased, and that both continuous slip and stick slip solutions are encountered.

| Considering ﬁext the largest pitching response, it is seen in pafticulaf that the
responsei level decreases first monofonically as a function of the spriﬁg stiffness until the

transition from single to multiple frequency is encountered. For larger values of k,, the

responsé exhibits beating which implies the very sharp increase of the largest response

seen in Fig. 2.9(b) near k,=0.0157 Nnv/rad.

There are a few differences as well between Fig. 2.9 and their counterparts of Ref.
8. In particular, Fig. 2.9(a) and 2.9(b) do not exhibit the symmetry with respect to the

' peak stabilization pbint (k,;=~0.0165 Nm/rad) that is observed in Ref. 8.

It was also questioned whether the “tuned damper” explanation developed in Ref.
8 in connection with the system of Fig. 1.1 could also be used to justify the maximum

stabilization that occurs near k£, ~ 0.0165 Nm/rad. An analysis of the natural frequencies

of the system in slip mbde revea.led that they were indeed close to each other but with
20% difference between the third natural frequency and the twoi that are veering/crossing.
- This difference is too large for the tuned damper arguments to be the sole justification for
the optimality of k,= 0.0165 Nm/rad but it is small enough for these arguments to be |
considered as the basis for this property.

It was next desired to investigate the behavior éf the response in situations where

the stuck system is stable while its slipping counterpart is unstable. The analysis of the
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corresponding response types and largest responses was achieved first around k,~ 0.985 |

Nmv/rad. It was found fhat limit cycle oscillations do 6c¢ur in the small range of flow
speeds U € t0.922, 0-.923] m/s, i.e. from the flutter speed in slip ‘mode to slightly above
the flutter speed in stick ﬁode. All finite amplitude limit cycle oscillations found were
multiple frequency stick-slip solutions with largest pitching response of the order éf 0.2,
i.e. approximately twice és large as those seen in Fig. 2.9. The limited zone .of flow

speeds at which limit cycle oscillations could be achieved for k,~ 0.985 Nm/rad and the

larger response they are associated with, both as compared to k,= 0.0165 Nm/rad, appear
to reinforce the, approximate, validity of the tuned damper assumption as the third natural

- frequency in slip for k,~ 0.985 Nm/rad is far from the other two‘,‘ approximzitely 7 times

larger.
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The search for suberitical limit cycle'oscillation, ie. occurring af speeds lower
than the flutter Speed of the stuck system, was continued for k,=0.016 Nm/rad in the
range U=0.72 to 1.01m/s. In fact, it was found that an unstable LCO does exit for

U <U, .. and this solution is a separatrix, i.e. it separates the motions decaying to zero

from those rapidly growing to infinity. In general, the instability of this separatrix renders
its numerical estimation very difficult. It was nevertheless estimated here by varying the

- ‘magnitude of the initial condition until a very slow decay (at first, at least) was obtained,

the system response during that phase then clearly approximatés the unstable LCO. On

that basis, it was observed that the motions on the separatrix would be characterized as

- single frequency continuous slip.

For speeds larger than the flutter speed of the‘ stuck system, stable single
frequency LCOs were obtained for U in the range [0.72, 1.013]. For larger values of U,
multiple frequency soluticns were observed, see Fig. 2.9. Both stable and unstable LCOs
pitching amplitudes are shown in Fig. 2.10. While the presence of the separatrix was not
confirmed in the fangc Ue[l, 1.013], it is ccnjectured that it is present and that the |
amplitude of these unstable motions. follows the dash line of Fig. 2.10. More Speciﬁcally,
it is suggested that the separatrix meets the stable single frequcncy LCO branch at the
flow speed where this solution become unstable as indicated in Fig. 2.10. The merging of

stable and unstable branches has been observed ina 1.5 degree of freedom model.%’
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2.3.3 Harmonic Balance Method
' Thé results presented in the previous section have been obtained by marching in
time the systerh response from a set of initial cénditions until steady state. It would be
desirable to have a procedure that allows the determination of the steady state solution
without considgring the transient motions. Two such approaches are possible.
An exact approach for the determination of thé steady state solution can be
formulated along the lines suggested by Den Hartog'' because the system is linear except

for the transition. That is, a set of yet unknown amplitudes are assumed at a time =0

(conveniently selected as the time at which the relative velocity f#-c=0) and the
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response is analytically bcomputed for a half—cycle' assuming the existence of ZEro, One, .
two.... stickiﬁg _phasési Then, é periodicity condition is enforced on positions and
Qelocities. For a continuous slip solution, this process would leéd to 10 equations for 10 |
unknowhs constituted of 9 poéitions and velocities at =0 and the périod. While thesé
equations are linear in the 9 unknown initial conditions, they are extremely nonlinear
with respect to the period aﬁd an iterative approach is necessary.

| A simpler but approxirnat¢ method to obtain the steady state solution is to rely on
the harmonic balance method. This approach rests on the approximation» of the response
asa Fourier series orf a yet unknown fundamental frequency. Inserting this representation

in the equations of motion and satisfying them to the highest possible harmonic leads to a

set of equations for the unknown fundamental frequency and the Fourier coefficients.

This approach is most reliable when the response is closest to a series of sine and cosine

terms, i.e. in continuous slip situations, and it is only in these situations that it will be

investigated here.

Considering only a single harmonic, the harmonic balance approximation of the

response is

h(t) = Acoskz + Bsinkr =Re[ (4~ iB)e™ | | (2-32)
a(t)=Ccoskr+Dsinkr =Re[(C-iD)e"‘f] o (2-33)
0(t) - a(f) = E coskr | o (2-34)

Note in the above equation that 8(¢)-a(¢) does not contain both sinkz and

coskr terms. It is indeed allowed to set one of the Fourier coefficients to zero in free
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response problems of 'éime invériant systems. This assumption is in‘ fact equivalent to
imposing =0 és a time at which the relative velocity vanishes. |
Then, from Eq.v (2-10) and (2-11) the lift and mpmerit can be ‘expressed as
L=(L, +iL, )(A—-iB)e™ +(L,, +iL,)(C—iD)e™ o (23%)
M=(M, +iM, )4~ iB)e™ + (vMa, +iM ;,.)(C ~iD)e™ (2-36)

A one term Fourier series approximation of the moment due to friction is obtained as

sin ot (2-37)

4uM
M, =sgn(@-a)uM, ~ ,uﬂ L

Substituting the above expressions for all displacements and friction moment into

Eq. (2.5) thro_ugh (2.7) leads to the following system of équatioris

0]
> o
0
5 4uN|0
H|C|=2£1 (2-38)
T |1
D ol
E
LE] 1)
where H is the following 6x5 array
(MK +k, + L, L, -Sk*+1L, L, 0 ]
-L,; ~MK +k, + L, -L, - =S,k*+L,, 0
H= —Sakz _Mhr —Mhi —Iuk2+ka _Mar _Mai —kd
M, -S k' -M, M, ~I K +k,-M,, 0
0 0 -1k 0 k, -1,k
i 0 0 0 | 1K 0

(2-39)

Proceeding with linear combination of rows, it is possible to rewrite Eq. (2-39) as
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4
Sl C(240)

o
OO Wk
|

' where _-I:I-iis obtained from the matrix H by replacing its fourth roW by the difference

between fourth and sixth row. ,

The determination of the 6 unknowns A, B, C, D, E and £ satisfying the 6

- equations of Eq. (2-3 6) is easily achieved by first partitioning the matrix H as

g=Z A - (2-41)

" wher'eb Hy is 5x5 and 7_-_1—2 is a five compénént row vector. Then, introducing

¢o'=[4 B C D Elit is seen that Eq. (2-41) is eqﬁiﬁalem to

[

p= (2-42)

—

‘and

AuN | | |
=" - (2-43)

Iee]

It is then concluded that ﬁl must be singular, i.e. that the fundamental frequency &

* must be determined so that det( A 1)=0. Once this is achieved, the vector ¢ containing the

Fourier components of the response is the eigenvector of H, corresponding to its zero

eigenvalue normalized according to Eq. (2-43). This normalization condition implies that
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the solution pbtained by the harmonic balance linearly scales with the coefficient of

friction. In fact; this result is also valid for the exact solution following arguments

developed in Ref. 8 and it is sufficient to conduct the aﬁalysis for a single value of u as

done here.
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b) Maximum pitching amplitude

Fig. 2.11 Comparison of LCO frequency and pitching amplitude obtained by

time marching (TM) and the harmonic balance method (HBM), k,=0.0155Nm/rad

The above procedure was applied for . k;, =0.0155 Nm/rad and

U e [1.0145,1.0265] m/s.- Shown in Fig. 2.11 are the frequency and amplitudes of
| response obtained by both the harmonic balance method and the time marching approach.
Clearly, the matching is excellent for single frequency continuous slip solutions. Figure
'2'12 provides a correspondence between the actual time histories for k,=0.0155 Nmv/rad
and U=1.0165m/s obtained by the time marching approach and compﬁted from Eq. (2-32)
through (2-34) with the Fourier coefficients 4, B, C, D, E estimated for Eq. (2-42) and (2-
43). This figure demonstrates that the harmonic balance approximation represents well

the solution as a function of time, not only in magnitudes.
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CHAPTER 3

AIRFOIL WITH INTERNAL FRICTION

| ~The préviéus chaptér has focused on the asgessment of frictibn in a system that
does not exhibit a post-flutter behavior in its absence. It is desired next to evaluate the
potential benefits of friction in aeroelastic systems that do exhibit aero—drivenAcycle
~ oscillation. The Work of Jadic et al.'? has demonstrated that a NACA0012 airfoil in an
incompressiblé inviscid flow may exhibit LCO behavior in a very narrow zone of Speeds -
past th¢ flutter pbint. This example will thus serve here to assess the role of friction m
existing LCO and Both th_e slidiﬁg and torsional friction niodels of Fig. 1.2 and 1.3 will be
invéstigated. The aerodynamic formulation»emplc‘)yed héreiis' identical to the oné used by
vJadic et al.lz, Yao and Liu,"® and Yao et al.'*"® and is briefly reviéwed below for

- completeness.

3.1. Aerodynamic formulation
The flow around the moving vairfoil was assﬁmed to be two-dimensional,
unsteady, inviscid and incompressible. Accordingly, the velocity field can be expressed
as
y=U.+v4 | - R
| where ¢ isa pontential satisfying the Laplace equaﬁon

Ag=0 | - | (3-2)
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| In addition to ‘verifying Eq (3A-2), the. poténtiél ¢ must also éatisfy the following
boundary conditions | |
(1) The ﬂéw taﬁgency condition
The flow is assumed inviscid and always attached on the surface of the airfoil so
i . ; _
(Vo -Vs)n=0 everyWilere on the airfoil surface (3-3)
where V_ is the local velocify of the airfoil surfacé, and ¥, is the loéél ﬂow velocity on

the airfoil, i.e. convection velocity, and # is the local normal to the airfoil surface.
(2) The Kelvin Theorem

The total circulation I'(#) of the confined flowfield is conserved

dr’
- —=0 ‘ : . 3-4
S dt : g , S . o : (3-9)

(3) The far field boundary condi;cion |
Vo=U,asr—>w ‘ ' . (3-5)
4) The‘unsteady Kﬁtta condition |
No pressure jump must take place across the wake at the airfoil trailing edge, or
AC, =0 at trailing edge (3-6)
| The current method adopts the linearized scheme‘developed by Kim and Mook'.
The.deterrnination of the potential ¢ and velocity field V¢ satisfying the above
equations was achieved through the introduction of source and vdrticity distributions on

the surface of the panel represented by high-order elements (cubic spline curved panels -
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with continubus slopéé and cﬁrvatures at the jdint points, see Fig 3.1) and of vortices shed
from the trail}ing edge, see Fig. 3.2. O nce shed, the vortices were assuméd to convect with .
- the local flow without‘dissipating thus forming an unsteédy airfoil-free wake system.
While the étréngths of the sources were specified by the slope of the airfoil, those
: Qf the vortices on the panel (ifxcluding the one being shed) were determined at each timeb
step to satisfy Eq. (3-3) to (3-6). More specifically, the flow tangency condition (3-3) led
to the system of equations |
Ay=C | G7)
_ bwhere A is tﬁe aerodynamic influence coefficient (AIC) matrix for t‘he. vorticity
distﬁbutions _;: - [Z  LTrg :IT . Further, y, is the vector of v;)rticity strengfhs on the airfoil
section and I',; is the vortex shed fo the wake at time 2. Finaily, C denotes the vector of

net induced normal velocities at the control points due to the sources distributions, wake,
vortices, and airfoil motions. Finally, the integration of the pressure on the airfoil results

- in the aerodynamic lift and moments, L and M, . Further details concerning this

formulation can be found in Yao and Liu'® and Yao et al.'*"*.
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- Fig. 3.1 Curved panel and linear source and vorticity distributions
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. 'Fig. 3-2 Aerodynamic model
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3.2 Airfoil ﬁth sliding block
- 3.2.1 Equations of motion
The sfructural dynamics model used in the present ﬁuﬁlerical eﬁperimént asvsumesv
that the airfoil exhibits only rigid body motion in pifching (rotation) and plunging.
~ (vertical movement). In the absence of friction, the equations of motion of this two-
degree-of-freedom systein are
Mh—Md cosad + Mdsinad® +kh=L : _ (3-8)
I,d-Mdcosah+ka=M, | | (3-9)
where h is thé plunging displacemenf of the airfoﬂ, deﬁﬁed positive upwards, and « is
. .the pitching displacement of the airfoil, deﬁned positive nose up. The coefficient d is the
distance between the elastic axis and the center of mass, M ‘is the mass of the airfoil
section with a unit spanwise length, I, is the corresponding mass moment of inertia of
- the airfoil section.‘ Finally, &k, and k, are the modal stiffnesses corresponding to the
plunging and pitching motions, reépectively.
When an internal sliding block is present, the equations of motion become

Mh - Md cos aé + Md sinad® + k,h—sin(@ - a)(T, +k,r) )
. (3-10
~mcos(6 - a)[—h cos(6-a)+réi +2rc —ad® |=L

Mdcosaii—lad—kaa—a(Tf+kfr) )
. (-11
~rm[~h cos(§ - @) +ré+2¢d—ad® |=-M

a
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for the vairfoil,.and :
msin(8 - @) - madi +mi = mrd® + (T, +k,7) =0 | (3-12)
~ for the sliding block. In these equations, @ is the fixed angle between the chord line and

the track in which the block slides and q is the shortest distance between the elastic axis

and the track. Further, m is the mass of the block, (2) is its displacement, and &, is the

stiffness of the spring connecting the block to the airfoil. Finally, T ' 1s the friction force

between the block and the track. It is defined as

T, = upN -sgn(7) when slip oceurs ’ (3-13a)
and
IT,| < N

when sticking occurs’ e (3-13b)

where N is the normal force and g, and 4, are the static and dynamic coefficient of
friction, respectively.
The integration of the equations of motion broadly follows the scheme proposed

1.12

by Jadic et al. “ but rhodiﬁed to account for the presence and effects of the sliding block.

That is, during slip phases, Eq. (3-10), (3-11) and (3-12) can be rewritten as

Mh+kh=F, (3-14a)
rﬁ'r' +kfr =F,

(3-14c)
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-. where

R=R-2R-Zha
-3

3

| c.. C
F=-R+2p -S2pp
2 RZ C] 1 C] h

. F, =-msin(6-a) Fobh | | Bmke® ~T, +ma’r
: : M, \ M,

C, =M +mcos’(6 -a)
C, = Md cos c + mrcos(8-a)
C, =1, +mr?

R, =-Mdsinad’® +sin(6 - a)(T, +k,7)

+mecos(8 - a)(2¢d —ad?)+ L

R, =a(T; +k,r)+mr(2id —ad®) - M,

During sticking phases, it is not the position of the block which is an independent

variable but rather the force of friction. Specifically, imposing 7 =# =0in Eq. (3-12), it is

found that

(T, +kr)= —m sin(6 — a)h + mdé + mra? (3-15)
and further that

Mph+kh=F,

(3-16a)
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(3-16b)

where
"
M, = 4"C_5
o C5
MG
o
F,=R, +—€§-Ma —gikaa
6 CG
'F;:M,,+3 3—51«,,;;
c, ° C,
C,=M+m

C, = Md cosc +mr cos(d —a) +masin(@ - )
Cs =1, +mr’ + ma?

. R,=L-[mdsina+macos(d-a)-mrsin(0-a)]a’

3.2.2 Numerical solution of the equations of niotion
| The numerical implf_cmentation of the abové structural and aerodynamic models
necessitates the careful handling of the ﬂuid-structure‘ interaction and of the friction
related transitions, i.e. slib to stick, stick to slip and slip to slip.
In regard té the first issue, a full aero-structure feedback was desired and was

accomplished in an iterative manner within each time step of the computations'?. To
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clarify this strategy, let #, and ,,, denote the beginning and end of the i” time step. Then,
‘at the first iteration of that time step, an estimate of the structural response at #,, was

~obtained by intiegrating the structural dyné.mics equations from L and !

., assuming right-
hand-sides of Eq. (3-14) or (3-16) (including the aerodynamic loading) to be constant for
the entire time step and with values obtained from time #,. This estimate of the structural

response was then used to update the boundary conditions for the flow field calculations

which in turn provided an estimate of the aerodynamic loading at #,,. At the second
iteration, these values and their counterparts at #, were combined to yield a linear |
interpolation of the right-hand-sides of Eq. (3-14) or (3-16) from which the structural

response at ¢,,, was again obtained. The second iteration was completed by the updating
of the aerodynamic loading at #,,, and a third iteration was then started. The procedure

was continued until a prescribed precision on A, @, and r (107 relative error between
successive iterations) was attained. The computation at the next time step was then
initiated and the process repeated until the total time was reached.

The handling of the friction induced transitions was found to fit very naturally
in the above ffamework and was achieved by the cubic/linear interpolation strategy |

described in section 2.3.1. |
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3.2.3 Result of the sliding block study
The analysis of the system of Fig. 1;2 was carried out for m/M =0.1. Further,
" the other system parameters wei'e selected so that the system in sticking mode reduces to

the one considered in Ref. 12. That is, m + M= 20.0 kg/m; I = 1.25 kg m, k,= 1.8 N/m’
3 k,=125N,d=01m, c= l'm, @ =45deg, and a=0. The equations of motion were

nondimensionalized by using the chord length and the time needed for the flow to pass
through the airfoil. At time =0, the mass m was assumed to be at the elastic axis of the
 airfoil. Thus, if it remained there, the airfoil properties would be identical to those

considered by Jadic et al.'? for which the flutter speed was found to be ¥, =2.02

SV, = U“’b) and where an LCO naturally occurs. The system was then analyzed from

wﬂ

Vm'=2.02 to 2.4. Additionally, different stiffnesses of the internal spring were selected

that yielded natural frequencies of the secondary system close to that of the LCO in the

absence of friction, i.e. k,= 0.36, 0.72, 1.00, and 1.20 N/m. For all cases considered,

small initial velocities were given to the pitch and block degrees of freedom (¢ = 0.1,
#= 0.1 nondim). Limit cycle oscillations with the movable friction block were noted for

nondimensional velocitiesup to ¥ =2.2.

The analysis of this broad set of data demonstrated the primary existence of
single frequency continuous slip and continuous stick solutions, see Fig. (3.3) and (3.4),

with the stuck solutions occurring at the highest coefficients of friction considered.
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d) Time history of the relative velocity of the block

Fig. 3-3 Response of the system, x2=0.02, k,=1.2N/m and V=2.2 (SFCS)
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Tlme history of the relative velocxty of the block

F ig. 3 4 Response of the system, ,u —0 08, %, =1.2N/m and V=2.2 (Stuck)

" The occurrence of LCO’s in stuck configurations of the block was not initially'
eﬁpecfed and does as not hdve a counterpart in Ref. 8. This surprising result is due to the
| effect of the block location on the inertia of the entire airfoil. Indeed, placing the block
(in a stuck configuration) away from the airfoil elastic axis increases the inertia of the
system, lowers its pitching natural frequency, and iﬁcreases the flutter speed. That is,
~ placing the mass aWay fromithe center, without any motion or friction, already providesa . '
- stabilization of the system. This simple observation demonstrates that it is very difficult
to assess the bonafide effe‘cts of friction on LCO amplitudes for the system of Fig.1.2.
| Accordingly, no further discussions of this model Will take place and the airfoil with the
torsionel friction device of Fig. 1.3 and 1.4 will be considered instead as it does not suffer

from the same issues.

3.3 Airfoil with retating disk
- Denoting by « (£), h(z), and 6(¢) the time varying pitching and plunging of the
airfoil and the rotation of the internal disk, it is found that the equations of motion of the-

system are (the horizontal translation is assumed to be blocked)

Mh-Macosaé+Masinad® +k,h=L (3:21)

(I-1,)é-Macosa h+(k, +k;)a~k,0=M,+M, - (3.22)
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‘Id§+kd(9-d)=—Mf R  (3.23})'

- In these eqqationé, the coefﬁcienf a‘isvt.he distance Eetwéén the elastic aﬁs and. -
' thé ce..nte;' of maés (the disfance PG, sree'Figv. 1.3),; M aﬁd;I are I_tt.leitotal mass aﬁd
" moment of inertia of the airfoil (including the disk); I,is fhe moment of inertia of the
internal disk, and &, , £, kd. are the stiffnesses in plunging, in pitching, and in torsion of | '
the disk. Finally, L and M, are the aerodynamic lift and moment acting on the airfoil, H

and M, is the moment associated with friction, see Eq. (2.4).

331 Results of the rotating disk study

To echo thé study of the lumped mass friction system, the anélysis of the system
of Fig. 1.3 and 14 Wés carried out for 7,/7 = 0.05. Further, the other system parameter
were set to m = 20.0 kg/m; I +1,=1.25 kg m, k,= 1.8 N/m2; bka=v1.25 N,a=0.1m, and

¢ = 1 m. Thus, the behavior of the airfoil when the disk is stuck is identical to the one
obtained by Jadic et al.'? The equations of motion were nondimensionalized by using the
chord length and the time needed for the flow to pass through the airfoil. The system was

then analyzed right at the flutter speed of the stuck system (nondim. ¥ =2.02), where a
LCO naﬁnally occurs.

From the time history of the response in stuck mode, it was determined that the

disk would be stuck at all times if x> 0.006. Accordingly, the analysis of the airfoil with
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the rotating disk was cbnductéd for 12 £0.006, The stiffness ‘kdv Was varied and the steady
state response of the system was determined by numerically integrating the equations ofv
motion (structural anci aerodynamic) from ‘a set of small initial conditions. Shown in Fig. -
» 3.3-3.8» are the largést i'esponses of the pitching, plunging, and torsional degrees-of—
freedom for ,u“= 0.001 - 0.006. Note thét the response of tﬁe system in stuck mode (or
without the disk) is also shown as “h stuck” and “alpha stuck”, see Jadic et al.’?

It is seeﬁ in these figures that the responses are below their stuck levels for low

values of the stiffness k, and decrease further as k, is increased. A minimum of both .-
pitching and plunging responses is obtained at an intermediate value of £, but it is

'immediately fdilowed by a sharp rise (especially for the smaller values of u) of all

| response amplitudes indicative of the resonance of the torsional disk system, i.e. when its
natural frequency is very close to the flutter frequency. This observation is in complete
agreement with the “tuned damper” discussion of Agelastos®. Increasing further the

stiffness &, takes the system out of resonance and all three responses decrease slowly

toward their stuck configuration levels.
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To condéhse further the resulfs of Fig. 3.5 through 3.10, it was decided to record
for each value of u. both the minim;lm and maximum values of thé pitchiﬁg and
pluxiging amplitudes over the domain £, e[O,oo) . The evolution of the minimum
ainplitude of the plﬁnging and pitching motioné with increasing coefficient of friction is
shown in Fig. 3.11. It is seen that the benefit of friction is most signiﬁcanf for low
coefficients of friction as the corresponding minimum amplitudes of response are well
below the» stuck values from Ref. 12. But the pénalty for this choice is a risk of very high
amplitudes, see Fig. 3.12 for the maximum amplitudes, és the minimum and maximum‘v

amplitudes occur withix; a Very narrow range of k, values.

The trend of the minirhum amplitudes, see Fig. 3.11, i.e. a monotonic decrease
with decreasing coefficient of fﬁction suggests the analysis of the frictionléss system, i.e.
with Hp = 1y =0 . Interestingly, it was found that the corresponding airfoil motions
converge to large amplitude LCOs when k, is laréer than 0.01685 N/m but the response
~ appears 1o diverge for k, <0.01685 N/m. It is tentatively suggested that this behavior |

originates from a difference in flutter speeds of the continuously sticking and frictionless
slipping systems (as discuséed in connection with the flat plate in Chapter 2) and the
limited domain of stable LCO of the NACA0012 airfoil in the absence of friction.

The character of »the various stable limit cycle was also investigated, see Fig.
3.13. It is seen that single frequency stick slip soiutions e.g. see Fig. 3.14, are fouﬁd in the

most of the domain with the exception of the values of k, and u that yield large
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" torsional responses. In that zone, the motions are primarily single frequency continuous

slip motion e.g. see Fig. 3.15, with some rare multiple frequency solutions, e.g. see Fig.

316

This characterization is expected: when a low torsional response is induced,

sticking is likely to occur while continuous slip motions will be seen for large rotations of

the disk. This latter situation occurs when the transfer of energy from the airfoil to the

disk takes place efficiently, ie. for low values of u and for values of k, that induce a

torsional natural frequency close to the flutter frequency. Finally, the occurrence of

‘multiple frequency solution at the center of the single frequency continuous slip zone is.

consistent with the analysis of Agelatos®.
The pattern of the vortices forming the wake was finally analyzed. It was found

that these patterns clearly parallel the steady state motions; they form a perfect harmonic

- arrangement for single frequency solutions, see Fig. 3.15(c) but exhibit beating when the

system response is dictated by multiple frequencies, see Fig. 3.16(c).
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CHAPTER 4

CONCLUSION S

o Tﬂe focus of this tﬁesis has been on the‘ allssevssmen’t"of the effects of iﬁtemal
frictioﬁ on the response of aeroelastic systems exhibiting either eXplosiVe flutter or limit
cyéle oscillations. | |

In the first part of this thesis, a ﬂaf—plate airfoil model is considered which
. supports a torsional friction device composed of a disk flexibly connected to the blate by
a torsional spring and squeezed Between two rough surfaces. The beﬁavior of this system
is studied when placed in .a uniform, inviscid and .incompres'sible‘ flow. A sfability,
analysis of the system with the disk in either continuéus sticking or frictionless slipping
| modes was carried out first to assess the expected stability domains. It was shown and
justified that the syétem fn slip mode exhibits inétabilities at earlier flow velocities than
its stuck counterpart. This property allows for the existence of both super- and subcritical
~ limit cycle oscillations. While the subcritical limit cycles were observed to be unstable, a
zone of stable supercritical limit cycle oscillations was found that extends about 3% past
the flutter speed of the system without the »friction device. This gain shows a good
stabilization property since the moment of inertia of the selected friction device system is
vonI’y 5% of the fnoment of inertia of the plate. The observed limit cycles exhibit either

continuous slip or stick slip behaviors and are either single frequency (periodic) or

multiple frequency (aperiodic or chaotic) with the latter ones appearing primarily at the
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" highest flow speeds and for the highest frequencies of the torsional friction device. The
~ above results were obtained by time marching the plate equations of motions with a

- rational approximation of the Theodorsen function but a harmonic balance approach was

also developed that led to very good approximations of the single frequency continuous

slip limit cycle oscillations.

The second part of this thesis focused on‘the response of a NACA0012 airfoil

placed in a uniform inviscid and incompressible air flow and supporting either the same

frictional device as the flat plate or a block sliding in a rough internal track. This airfoil
was vshown in earlier studies to exhibit limit cycle oscillations at and slightly abbve its
flutter speed without any frictional device. The study of | this. system with a’frictional
device provides thus a basis for the assessment of the potential effeéts of fricfion on
aeroelastic systems exhibiting aero-driven limit éycles. The block moving in an internal
track was first considered to model friction in the system. While iimit cycle oscillations
were observed, it was also shown that the block could become stuck at a position far from
its original one and thus would create a change of inertia sufficiently large to stabilize the
airfoil. This effect does not. involve any dissipation due to friction and is thus not relevant
to the present effort. Accordingly, this frictional model was not considered further and
Was replaced by its torsional counterpart (as in the flat plate analysis) whiéh does not.
suffer from the same defect. The results of time marching computations demonstrate that

friction can substantially decrease the level of the limit cycle oscillations, especially with

a low coefficient of friction, but that increases in the response are also possible,




depending on the seléctioﬁ of the natural frequenéy Qf the .torsional friction device. As in |
the flat plate,.continuduvs slip and stick slip solutions weré obsefved mosf of which wére
sihgle freqﬁency (periodic).

iThe results of this study démonstrafe that frictioﬁ ¢an indeed provide a
stabilization of an impending flutter and can significantly decrease the amplitude of .

existing limit cycle oscillations of aeroelastic systems with an appropriate selection of the

friction device parameters most notably natural frequency and coefficient of friction.
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